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Use of correspondence discriminant analysis to predict the
subcellular location of bacterial proteins
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Abstract

Correspondence discriminant analysis (CDA) is a multivariate statistical method derived from discriminant analysis
which can be used on contingency tables. We have used CDA to separate Gram negative bacteria proteins according
to their subcellular location. The high resolution of the discrimination obtained makes this method a good tool to
predict subcellular location when this information is not known. The main advantage of this technique is its
simplicity. Indeed, by computing two linear formulae on amino acid composition, it is possible to classify a protein
into one of the three classes of subcellular location we have defined. The CDA itself can be computed with the ADE-4
software package that can be downloaded, as well as the data set used in this study, from the Pôle Bio-Informatique
Lyonnais (PBIL) server at http://pbil.univ-lyon1.fr.
© 2002 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

In Gram negative bacteria, after being syn-
thetized by the translation apparatus, a protein
can stay in the cytoplasm or be exported. In the
case of exported (but not secreted) proteins, four
possible subcellular locations exist: the inner
(plasmidic) membrane, the periplasmic space, the
cell wall and the outer membrane. In sequence
databases, information on the subcellular location
is available for some proteins only. In the case of

Gram negative bacteria, this information is given
for 5325 proteins sequences among 16 561 (32%)
in SWISS-PROT 38 [1]. It is then interesting to
have a general and simple method able to predict
the location when this information is not known.

Multivariate statistics are particularly adapted
to study compositional data in proteins. For ex-
ample, correspondence analysis (CA) was em-
ployed to determine trends in amino acids usage
in Escherichia coli [2]. Co-inertia analysis has been
used to examine amino-acid physico-chemical
properties and protein composition [3]. Discrimi-
nant analysis (DA) has served to determinate
protein secondary structural segments [4], to dif-
ferentiate intracellular and extracellular proteins
[5], and to detect membrane-spanning proteins [6].
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Correspondence discriminant analysis (CDA) is
a method that can be used on frequency tables
while the classical DA is limited to quantitative
variables. So CDA can easily be employed with
sequence data such as codon or amino acid fre-
quencies tables. In a previous study, we used
CDA to predict the subcellular location of E. coli
proteins divided into three classes: cytoplasmic,
periplasmic, and integral membrane proteins [7].
The good results obtained convinced us to extend
the use of this method to all Gram negative
bacteria.

2. Correspondence discriminant analysis

2.1. General presentation

CDA is a peculiar case of the duality diagram
[8,9]: a triplet (Z, M, N) is made of an n by p data
table Z, a matrix M defining an Euclidean metric
in the subject space E=Rp, and a matrix N
defining an Euclidean metric in the variable space
F=Rn. From this we deduce by matrix diagonal-
ization four families of vectors with several opti-
mality properties (Fig. 1). We use this diagram in
the following peculiar case: X= [xij ] is a contin-
gency table with q (proteins) lines and p (amino
acids) columns. Notations employed are the clas-
sical ones of CA:
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The q lines are split into n classes (here n=3)
and we have the contingency table Y derived by
adding the lines from X by classes:

Y= [ykj ]1�k�n with ykj= �
i/Cl(i )=k

xij (8)

The notation i/Cl(i )=k means that the line
(protein) i belongs to the class k. We have:
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The triplet (Z, M, N) is then defined by:

Z=Dn
−1G−UnpDp with Unp= [1] (15)

At line k and column j the general term of Z is:

Zkj=
gkj

gk �

−g�j (16)

which is the difference between the frequency of
amino acid j in the class k and its total frequency.

M= (F tDq
−1F)−1 (17)

N=Dn (18)

The duality diagram corresponding to this
triplet is shown on Fig. 2. The principal factors
define a M−1-orthonormal basis of eigenvectors
from matrix MZ tNZ. Vector 1p is in the kernel of
Z because:

Fig. 1. Duality diagram of the triplet (Z, M, N). Here E* and
F* are the dual spaces of E and F.
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Fig. 2. Duality diagram of the triplet (Dn
−1G−

UnpDp, (F tDq
−1F)−1, Dn).

and the square of its norm is its variance for Dn

weighting. As a consequence, the first principal
factor verifies the relationship presented in Fig. 3.

To perform the computations we can note that:

F tDq
−1F=W�W t (27)

(F tDq
−1F)−1=W�−1W t (28)

We diagonalize:

�−1/2W tZ tDnZW�−1/2=V�V t (29)

and then the factors are obtained by W�−1/2V.

2.2. Practical use

CDA can be computed with modules included
in the ADE-4 package devoted to multivariate
statistics [10]. This package runs on micro-com-
puters under MacOS (7.1 or higher) and Windows
(95 or higher) operating systems. It may be down-
loaded from the Pôle Bio-Informatique Lyonnais
(PBIL) World-Wide Web server at http://
pbil.univ-lyon1.fr/ADE-4. The modules required
to perform CDA are ADETrans, COA, CategVar
and Discrimin. Note that an online version is also
implemented on the server [11].

The first step is the computation of a CA on the
table containing the amino acid absolute frequen-
cies with the COA module. After that, the dis-
crimination itself is computed and tested with the
Discrimin module. To estimate the significance of
the discrimination the program computes a
Monte-Carlo test. This test consists of repeated
random permutations of lines between the classes
followed by a recomputation of the CDA. Once
the factor scores for the lines and the columns
have been obtained, the Discrimin module can
also be used to introduce supplementary individu-

Z1p=Dn
−1G1p−UnpDp1p=1n−1n=0 (19)

Principal factors (u) are numerical scores of F
columns that are orthogonal to 1p. They are cen-
tered because:

u t((F tDq
−1F)−1)−11p=u tF tDq

−1F1p=u tF t1q

=u t
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They are also M−1-normed, so we have:

u t((F tDq
−1F)−1)−1u=1= (u tF tDq

−1)Dq(Dq
−1Fu)

(21)

They are numerical scores, centered by amino
acids, for which the means by lines of F are
normed and, as they are centered, we have:

(u tF tDq
−1)Dq1q=u tF t1q=0 (22)

Their variances are equal to 1 and they
maximize:

�Zu�N
2 =�(Dn

−1G−UnpDp)u�Dn

2 (23)

Due to the centering:
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Dn
−1Gu contains the means by classes of factor

scores. This vector is centered because:
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Fig. 3. Examination scheme of the analysis. 1, Columns
(amino acids) scores centered for Dp. 2, Mean by lines from F
with variance equal to 1. 3, Mean by classes with maximized
variance.

http://pbil.univ-lyon1.fr/ADE-4
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als into the analysis by averaging. To do this, we
use the relationship:

�i(k)=
x��

xi�
�
p

j=1

uj(k)xij

x�j
(30)

where �i(k) and uj(k) are respectively the score for
an individual (protein) i and the score for a
column (amino acid) j on factor k. Thanks to this
option it is possible to estimate the reliability of
the assignment using a test set for which the
belonging of the individuals to the predefined
classes is known. The proportion of the individu-
als from the test set that are correctly classified
will give the accuracy of the prediction.

3. Data set

To establish our data set we have used the
release 38 of SWISS-PROT structured with the
ACNUC sequence database management system
[12]. The advantage provided by SWISS-PROT is
the fact that almost all exact redundancies have
been removed so that there is no risk to introduce
biases due to sequence duplications. In our data
set we have discarded hypothetical proteins, par-
tial proteins, proteins with less than 50 amino
acids, proteins without any indication of their
subcellular location and proteins for which the
subcellular location was unsure (potential, puta-
tive or obtained by similarity).

To study the subcellular location of proteins
from Gram negative bacteria we have refined our
selection by retaining only cytoplasmic proteins,
integral membrane proteins and periplasmic
proteins. We have not integrated proteins from
the cell wall because their number was too low
(only nine in SWISS-PROT 38). We have not
distinguished inner membrane proteins from outer
membrane proteins because this information was
almost never available. Another problem would
have been the fact that amino acid composition of
these two kinds of proteins was extremely similar
and so, CDA would have been unable to distin-
guish them. Proteins anchored in the inner mem-
brane were not considered because it was often
not possible to determine if the unanchored re-
gion of the protein laid on the periplasmic or in
the cytoplasmic side of the membrane.

Table 1
Breakdown between species for the data set

Species %N

28.2Escherichia coli 509
Salmonella typhimurium 121 6.7
Haemophilus influenzae 107 5.9
Synechocystis sp. 3.970

53Helicobacter pylori 2.9
Pseudomonas aeruginosa 45 2.5
Treponema pallidum 35 1.9

33Thermus aquaticus 1.8
Paracoccus denitrificans 1.527

26Klebsiella pneumoniae 1.4
782 43.3Others

1808Total 100.0

Our selection contained 1808 proteins with 850
(47%) cytoplasmic proteins, 665 (36.8%) integral
membrane proteins, and 293 (16.2%) periplasmic
proteins. These 1808 proteins came from 201 dif-
ferent species, the top ten species representing
56.7% of the total (Table 1). The percentage of
integral membrane proteins was higher than ex-
pected (10%, following an estimation in E. coli
[2]). This over-representation was due to the fact
that the location of this kind of proteins is more
often documented in the database than the others.
The final selection was randomly split into two
parts, one analysis set (with a total of 362 114
amino acids) and one test set, with equal numbers
(�1) of individuals for each of the three classes.
The CDA itself was performed on the analysis set
and the measure of the discrimination accuracy
was computed on the test set. Both sets can be
downloaded at ftp://pbil.univ-lyon1.fr/pub/
datasets/CMPB2001/.

4. Results

The map obtained by crossing the two factors
of the CDA performed on our analysis set showed
that the first factor separates the integral mem-
brane proteins from the cytoplasmic and periplas-
mic proteins, while the second factor separates the
periplasmic proteins from the cytoplasmic and
integral membrane proteins (Fig. 4). On the first

ftp://pbil.univ-lyon1.fr/pub/datasets/CMPB2001/
ftp://pbil.univ-lyon1.fr/pub/datasets/CMPB2001/
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factor, the mean of the scores obtained by integral
membrane proteins was −1.060 (S.D.=0.754)
and the mean of the scores obtained by the other
proteins was 0.577 (S.D.=0.629). Also, when
compared to the two other classes, integral mem-
brane proteins showed a higher variance for their
factor scores (0.569 instead of 0.310 for cytoplas-
mic proteins and 0.399 for periplasmic proteins).
The resulting cutoff value to separate the two
groups was −0.167. On the second axis mean of
the scores obtained by periplasmic proteins was
−1.699 (S.D.=0.937) and the mean of the factor
scores obtained by the other proteins was 0.268
(S.D.=0.829). The corresponding cutoff value
was −0.655.

Looking at the discriminant power of amino
acids (Table 2) we can say that the amino acids
with positive values on both factors discriminate
cytoplasmic proteins (Arg, Glu, His). Amino acids
with negative values on the first factor and posi-
tive scores on the second factor discriminate inte-
gral membrane proteins (Phe, Leu, Ile). Finally,
amino acids with slightly positive values on the

first factor and negative on the second factor
discriminate periplasmic proteins (Asn, Pro, Gln,
Thr).

With the averaging formula given in Section
2.2, it is possible to project supplementary indi-
viduals in the analysis and, using the thresholds
shown above, to predict the subcellular location
of a given protein. Factor scores for the amino
acids on the two axes and an example of projec-
tion of supplementary individual are shown in
Table 2. For the separation between integral
membrane proteins and the group containing cy-
toplasmic and periplasmic proteins, accuracy of
the prediction on our test set was 88.2%. For the
separation between cytoplasmic proteins and the
group containing periplasmic and integral mem-
brane proteins, accuracy of the prediction on our
test set was 85.2%.

5. Discussion

The results obtained in the discrimination of
proteins from Gram negative bacteria following
their subcellular location confirm and extend our
previous results on E. coli [7]. The discrimination
of integral membrane proteins by amino acids like
Phe, Leu and Ile is not surprising as these amino
acids are known to be hydrophobic. Also, dis-
crimination of the cytoplasmic proteins by Arg,
Glu and His can be easily explained as these three
amino acids are charged and hydrophilic and so
are required in soluble proteins. At last, discrimi-
nation of periplasmic proteins by Asn, Pro, Gln
and Thr, Asn and Gln can be explained by the
fact these amino acids are known to slow protein
folding [5], and slow folding is required in ex-
ported proteins.

The higher variance observed for the factor
scores of the integral membrane proteins on the
first axis means that amino acid composition is
more variable in this class of proteins. This is
probably due to the fact that these proteins have
regions of variable length not inserted in the
membrane and these regions contain non-hydro-
phobic amino acids.

The good separation between the different
classes on the two axes indicates that CDA can be

Fig. 4. Factor map of the two discriminant axes of the analysis
on the 904 proteins from our analysis set. Each protein is
represented by a square linked by a line to the gravity center
of the group it belongs to (1, cytoplasmic; 2, integral mem-
brane; 3, periplasmic).
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Table 2
Factor scores and discriminant power for the amino acids and example of averaging for a test protein from E. coli

uj(1) uj(2) dj(1) dj(2) xij x�j �ij(1) �ij(2)

0.2423 0.1848 0.1714 17 17 932 0.1302 0.2100Arg 0.1502
0.5793 −0.1270 0.1084 45−0.3233 36 479Leu −0.3646 0.6534

−0.3040 −0.1134 −0.0222 32Ser 20 168−0.3494 −0.5070 −0.4411
−0.0992 −0.0322 −0.0683 17−0.2155 19 367Thr −0.1730 −0.0796
−1.3684 0.0649Pro −0.09610.3583 17 15 857 0.3512 −1.3415
−0.1922 −0.0791 −0.0399 52−0.3243 35 627Ala −0.4328 −0.2565

0.0249 −0.0766 −0.0138 28Gly 29 376−0.1870 −0.1630 0.0217
0.2492 −0.0373 0.0300 29−0.3930 27 493Val −0.3791 0.2403

0.2215Lys −1.3552 0.2367 −0.2289 6 17 933 0.0678 −0.4146
−0.2529 −0.0018 −0.1595 10−0.1117 13 279Asn −0.0769 −0.1742

−0.1558Gln −0.3920 0.0395 −0.0895 7 13 733 −0.0726 −0.1827
0.0111 0.1489 0.0485 7 7794His 0.26510.3227 0.0091
1.5223 0.3345 0.1326 70.9552 21 208Glu 0.2883 0.4595
0.0362 0.2429 −0.1032 5Asp 18 6000.8754 0.2152 0.0089
0.1507 −0.0530 −0.0550 10−0.1700 10 728Tyr −0.1449 0.1285

0.0815Cys 0.0671 0.1789 −0.0308 4 3473 0.0858 0.0706
0.4322 −0.2063 0.0758 37−0.1738 15 910Phe −0.3696 0.9191

−0.0813Ile 1.0229 −0.0858 0.1307 34 22 037 −0.1148 1.4431
−0.2954 −0.1236 0.0245 23 9886 −0.5366 −0.6284Met −0.2522
−0.0787 −0.3626 −0.0336 9−0.2274 5234Trp −0.3576 −0.1237

396 362 114Total −2.2890 0.5220

In this table column uj(k) contains the factor scores, dj(k) the discriminant power values, xij the amino acid frequencies of E. coli
protein BCR–ECOLI (P28246), x�j the amino acid frequencies in the whole analysis set. For the last two columns we have

�ij(k)=
x��uj(k)xij

xi�x�j
.

So the respective sum of these columns gives the score of the protein on the two factors of the analysis. Due to these scores, and
taking into account the thresholds obtained, we can classify BCR–ECOLI as an integral membrane protein.

used to predict the subcellular locations of proteins
in Gram negative bacteria when this information is
not known. The best method available for discrim-
inating integral membrane proteins from globular
soluble proteins is a DA of protein sequence
characteristics (such as maximum local hydropho-
bicity), and its accuracy is 95% [6]. The resolution
of our method is a bit lower (88.2%), and this
difference is partly due to the fact that we used only
amino acid frequencies to discriminate these
proteins. In Gram negative bacteria, the best
method already published to identify periplasmic
proteins is an expert system using amino acid
composition [13]. This system can identify these
proteins with a reliability of 83% and our analysis
gives equivalent results (85.2%) using a much
simpler computation.

Even if our method gives results with an accu-
racy only equivalent to what was published before
it has the advantage of producing a discrimination
between the three classes in a single analysis, as the
preceding methods only separate proteins into two
groups (integral membrane proteins versus soluble
globular proteins and periplasmic proteins versus
other proteins). So it is difficult to directly compare
the results obtained by these methods and those
obtained by CDA. Another point is that the
analyses previously published [6,13] were done on
much smaller sets of proteins (respectively 102 and
106 proteins instead of 904), and it is not sure that
these methods would produce similar accuracies
with present day protein data.

Lastly, CDA is a much more general method
than the two cited above which are limited to very
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specific protein studies. Indeed CDA could be
used in any study for which genes or proteins are
classified into predefined groups. For instance, it
could be used to see which codons are specific of
putatively horizontally transferred genes in some
bacterial species, as it has been proposed that
these genes have a codon usage that differs from
the average use in these organisms [14,15]. Also,
as codon usage in vertebrates is heterogeneous
and varies greatly depending on the region of the
genome studied [16], CDA can be used to find the
linear combination of codons discriminating genes
belonging to different classes. Indeed CA cannot
be used to compare codon usage in orthologous
genes in these species, as the between-species dif-
ferences will often be indistinguishable from the
within-species differences. Similarly CDA could
be used to compare amino acid usage in or-
thologous genes of different organisms.

Acknowledgements

Thanks are due to Manolo Gouy for his helpful
comments and careful reading of the manuscript
and to Daniel Chessel for his help on CDA
mathematical basis.

References

[1] A. Bairoch, R. Apweiler, The SWISS-PROT protein se-
quence data bank and its supplement TrEMBL in 2000,
Nucleic Acids Res. 28 (2000) 45–48.

[2] J.R. Lobry, C. Gautier, Hydrophobicity, expressivity and
aromaticity are the major trends of amino-acid usage in 999
Escherichia coli chromosome-encoded genes, Nucleic Acids
Res. 22 (1994) 3174–3180.

[3] J. Thioulouse, J.R. Lobry, Co-inertia analysis of amino-
acid physico-chemical properties and protein composition

with the ADE package, Comput. Appl. Biosci. 11 (1995)
321–329.

[4] M. Kanehisa, A multivariate analysis method for discrim-
inating protein secondary structural segments, Protein Eng.
2 (1988) 87–92.

[5] H. Nakashima, K. Nishikawa, Discrimination of intracel-
lular and extracellular proteins using amino acid composi-
tion and residue-pair frequencies, J. Mol. Biol. 238 (1994)
54–61.

[6] P. Klein, M. Kanehisa, C. DeLisi, The detection and
classification of membrane-spanning proteins, Biochim.
Biophys. Acta 815 (1985) 468–476.

[7] G. Perrière, J.R. Lobry, J. Thioulouse, Correspondence
discriminant analysis: a multivariate method for comparing
classes of protein and nucleic acids sequences, Comput.
Appl. Biosci. 12 (1996) 519–524.

[8] M. Tenhenhaus, F.W. Young, An analysis and synthesis of
multiple correspondence analysis, optimal scaling and
other methods for quantifying categorical multivariate
data, Psychometrika 50 (1985) 91–119.

[9] Y. Escoufier, The duality diagram: a means of better
practical applications, in: P. Legendre, L. Legendre (Eds.),
Developments in Numerical Ecology, NATO Advanced
Institute, Springer Verlag, Berlin, 1987, pp. 139–156.

[10] J. Thioulouse, D. Chessel, S. Dolédec, J.M. Olivier, ADE-4:
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