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1. Graphics as an interdisciplinary communication language.

The need for graphical data analysis tools is not to be demonstrated, and has been rec
recently by Morgenthaler and Tukey (1989) in a conference about the future of
analysis.

Scientific graphics, as defined by Bertin (1967), can play two basic and compleme:
roles. First, it is a particularly effective communication tool, and is used as such i
whole scientific literature. But in the precise scope of biometry, the part of communic
tool is made specially more crucial by the fact that exchanges are basically o
disciplinary. Auda (1983, p.122) has already underlined this point, by noting that "I
context, not only can Graphics setile a dialogue between researchers working in fiel
different as Statistics, Informatics and Biology, but it alsc plays a prominent part i
understanding of the scientific message”. We are going to give some examples of
point.

1.1. BASIC PRINCIPLES.

The credit must be given to Bertin (1967) for having defined the laws of scier
graphics. Auda (1983) has derived from them the basic principles which can be appli
multidimensional analysis of ecological data sets. It is interesting to first recall
principles: universality, hypotheses economy, and existence of several levels of perce
of a graph.

According to the universality principle, a graph should not use conventions (e.g.; ling:
or cultural conventions), and should only be based upon the following three fundam
relationships:

- similarity/dissimilarity relationship
- order relationship
- proportionality relationship

The relations between the elements of a graph should reflect the relations betwee
elements which are symbolized.
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According to the principle of hypotheses economy, the introduction of new unnecessary
n_wu._oam should be avoided (for example the representation of a quantity should be done
with a circle rather than with a non-geometrical picture),

Lastly, a graph should be readable for different levels of perception (global, mean and
local levels for example).

The three main types of variables which can be used for the construction of a graph are
variables of separation, value, and size. Separation variables, like the different hatching
patterns of the zones on a geographical map, should only be used to display
similarity/dissimilarity relationships. Value variables, like gray levels on a map, allow the
introduction of an order relationship. Size variables can be used to display a
proportionality relationship, for example on a map with circles having an area proportional
to the value of a variable.

To these basic concepts can be added the possibility to fit together elementary graphs. This
is often necessary to render an account of the structuration of the data set (i.e.; groups of
rows, columnns, etc.). Collection and superimposition are the principal ways to assemble
elementary graphs. The multiwindowing technique, introduced by operating system of
computers with advanced graphical user interface is particularly suitable to these kinds of
clementary graphs assembly.

Far from being only a set of theoretical considerations without practical consequences,
these remarks have been at the origin of a computer program which has evolved from the
"Graphique" program from Auda (1983), written on a Data General Eclipse $/140 mini-
computer with a Tektronix plotter, to the "GraphMu" program (Thioulouse, 1989, 1990)
for the Apple Computer Macintosh™ microcomputer.

Figure 1 shows examples of graphs using the above principles. These graphs have been
drawn on a Macintosh with GraphMu and completed (numbering and positioning) with an
object-criented graphics software (e.g,; Claris MacDraw™)

1.2. EXPLORATORY DATA ANALYSIS (EDA).

EDA finds its origins in the works from Tukey (Tukey, 1977; Tukey and Tukey, 1981a,
b, c; Chambers er al., 1983). It arises from an exploratory approach, and is
complementary to confirmatory data analysis, represented by inferential statistics and
particularly generalized linear modeling. Starting from the fact that the hypotheses on
which are based classical inferential statistics are often difficult (or impossible) to verify,
the EDA proposes the use of simple graphical representation of data (scatter diagrams), or
more elaborated (whisker box, cellulation technics), together with basic descriptive
statistical parameters (distribution histograms, quantiles, smoothing, linear regression,
residuals study). According to Tukey and Tukey (1981a) a difference can be made
between "archival graphics”, which are useful to store informations in a compact way, and
“"impact graphics”, intended for putting in evidence a precise characteristic of data.
Moreover, they distinguish three additional aims: merging data points, for example by
using circles instead of points on a scatter diagram, separating, for example by using
different symbols to represent points belonging to different groups, and alternating, for
example by using symbols (for data points) positioned on a smoothly varying background
(contour curves) so that both separation and merging can be achieved on the same graph.
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Figure 1: Illustration of some basic principles in scientific graphics. Labels represent
the meaning of each point (4), lines symbolize the belonging to a class (5) or
neighbering relationship (1). Size of pictures are proportional to a given quantity (2, 6,
8). Assembly of elementary graphs using collection (2, 6, 7), superimposition (1, 2, 3,
6) or both (6). All these graphs have been drawn on a Macintosh™ microcomputer
using ADECOQ, GraphMu, and Claris MacDraw™ software.
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for example, it is easier to perceive the position on an axis than more complex aspects, like
the size of an object), and associated mental processes (for example, additivity of visual
effects).

Computer support for EDA, which was initially lacking (Tukey, 1977), or restricted to
computing center users, is now «ﬁ&m_w m«E_mEn on microcomputers. On the Macintosh,
we can quote Data Desk (Cornelt University) and JMP (SAS Institute).

EDA approaches multivariate analysis in a very shallow way, and without concemn for
multidimensional methods. Chambers et al. (1983) make use of multiwindowing for the
so-called "draftsman display” (projections on all the possible couples of axes) and its
generalization to multidimensional data. This approach rapidly leads to an explosion of the
number of possibie graphs (see figure 2, and Chambers and Kleiner, 1982). Other
graphical techniques met with the same difficulty when trying to approach multivariate data
tables abreast: Chernoff faces (Chernoff, 1973; Wang, 1978), star diagrams, Andrew's
curves (Andrews, 1972), etc. Several practical examples can be found in Everitt (1978),
Wang (1978), or Wainer and Thissen (1981). In all cases, the discrimination, or the search
for global trends, must be done visually. This is illusory when the number of variables and
measures grows. Moreover, as pointed out by Gower and Digby (1981), these methods
are dependent on subjective criteria which can be misleading (assigning variables to the
elements of Chernoff faces, to the axes of star diagrams, to coefficients of Andrew's
curves, etc.).

1.3. GRAPHS FOR MULTIVARIATE DATA ANALYSIS ON MICROCOMPUTERS.

To overcome the above problems, multidimensional data analysis methods (PCA: principal
component analysis, CFA: correspondence factor analysis, MCA: multiple correspondence
analysis) must be used, but this does not mean that we have to abandon our graphical
tools. It is worth noting that the use of improved graphical technigues (as compared to
mere factorial maps) in the field of multivariate analysis has not formed the subject of a
synthesis, or of a theoretical settlement (which has been done for graphs in general, see for
example Tufte (1983), or Bertin (1967)). It is however frequently met in scientific
literature. Several examples may be found in the book from Barnett (1981): Gabriel (1981)
draws ellipses in the plane of his biplot to summarize the set of peints belonging to the
same group. In the same paper, the author uses circles on a biplot with the Mahalanobis
metric to represent the 5% thresholds of TZ Hotelling tests between sample couples. In
both cases, the introduction on the factor map of an information about the data set makes
the interpretation of the results easier. A similar technique consists in drawing on the factor
map the results of another analysis of the same data set (generally a hierarchical
classification when the aim is to discriminate between sub-populations). Gower and Digby
(1981, figure 6.22, p. 110) give an example of such a strategy by plotting on the factor
plane of a procuste analysis the mean of each sub-population, linked to all the individuals
which compose it by a "hedgedog" diagram. One can find in Everitt (1973) other
examples: bidimensional oriented symbols plotted on the factor map, minimum spanning
tree, automatic classification, eic.

In ecology, Owen (1990) uses 95% confidence ellipses in the factor plane of a detrended
correpondence analysis (DCA) (Hill, 1979a; Gauch, 1982) to summarize the position and
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Figure 2: Numerical information vs. graphical information: representation of a
correlation matrix, Upper triangle: correiation coefficients cﬁion:.mwo: couple of
variables. Lower triangle: scatter diagrams (each cloud is standardized: mean = 0
and variance = 1) for each couple of variables. Data are from Carrel et al. (1986),
15 physicochemical variables are measured at 39 sampling dates. v:socms the
power of graphical representations is high, the need for numerical tools to

summarize the information is obvious.
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the dispersion of 141 mammalian specics in 189 quadrats Systematically di
Texas, according to eight types of environment defined by a classificar
(TWINSPAN) (Hill, 1979b; Gauch, 1982). Moreover, the author uges conto!
draw on the geographical map of Texas the variations of the values of the first
from DCA (the first factor reflects the global productivity and the second th
seasonality). Conversely, the species richness is fitted with two-variables sec
polynomials, and the results is represented as gray-level maps in the first
plane.

The above examples are two kinds of graphical techniques which can
alternatives to factor maps: representation of the values of factors as functions
structures (graphical representation of a factor on a geographical map, Or as a
time, called "functional representations™), or, reciprocally, representation of da
structure of data) on the factor plane. This approach, although being natural, e
use of classical multidimensional software, which are limited to classical fi
Moreover, to be really efficient, graphical tools for multivariate data analysi
interactive: a graph must not be the result of several hours of work, whether i
paper sheet or a computer console. The user should be able to use the "trial
method to obtain, starting from the results of the statistical methods, the graph
to their expression (for example choosing from factor map, functional Tepresen
diagram, hedgedog diagram, etc.). Lastly, the integration of computing and gra
in the everyday desktop environment (word processor, spreadsheet, electronic
makes much easier the task of writing reports, papers, and various manuscrip
the results of data analyses must be presented. The availability of thes
microcomputers widely spread in research laboratories allows the users to }
elements necessary to the practical realization of these analyses. The M
microcomputer fills 2 particular place in this field, because of its graphical use
and the advanced integration between the different programs, allowing 10 easi
and graphs. The ability to operate the pictures coming from a data analysi
assemble them into an orderly graph (for example the correlation circle for va
histogram of eigenvalues, and the functional representation of row coordinar
include them directly into a word processor program is extremely valuable an¢
Macintosh™ and related microcomputers particularly suitable for the &
environmenizal data.

1.4. ALGEBRAIC BASES FOR GRAPHICAL DATA ANALYSIS.

Graphs can be used to understand the relationships existing between data anal
underlying algebraic bases. Most of the difficulties are already present in tt
three-dimensional space IR3: figure 3 shows a simple object made of 16 points
three coordinates. Starting from two angles a and b, elementary algebraic opera
to define a new base of IR3, (vectors U,V,W) and compute the coordinates of
this new base (figure 4). By using only the last two elements of the new coord
obtains the projection of the object onto the plane which is orthogonal to vector
by angles a and b. The cartesian representation of the 16 points with the prec
dimensional coordinates is an euclidean representation of the object. Thus
operation of data analysis (figure 5) consists in projecting objects onto plane
looking at these planes in front-view. Mathematically, these operations are ident
when points are defined by p coordinates (Le.; the measure of p variables, or o1
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Figure 3: Three-dimensional representation of an object made of 16 points in R3,
Points are labeled from A to P. The upper-right part of the figure gives the classical
(top, front and side) views. The value of each component of the 16 coordinates is
listed with the corresponding labels under the figure.
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Figure 4: Projection of a three-dimensional ebject on a plane.
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Figure 5: Geometrical view of the basic data analysis operation: a
cloud of points in a vector space is projected onto a plane and the
image of the cloud on this plane is interpreted.
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data table). By this way, one can obtain a concrete image of an abstract object, which
basis of the French school of data analysis.

1.5. DATA ANALYSIS PRINCIPLES.

The transition between the preceding algebraic bases and numerical data analysis is
on a simple principle. Three measures (i.¢.; three variables) define three values (x,y,
therefore one point in IR3. Repeated n times, these measures define a cloud of n po
IR3. There is an infinity of ways to project this cioud over a two-dimensicnal plar
data analysis proposes particular planes, called "inertia planes”, which have
interesting properties: the mean of the distances between each couple of poi
optimized. This is the basic feature of all the so-called "eigenvalue methods'
particularly of PCA, CA and MCA.

The main conceptual difficulty comes from the fact that a data table having n
{measures) and p columns (variables) can be considered either as a cloud of n po.
IRP, or as a cloud of p points in IR" (in the example of figure 6, as a cloud of 21 po
IR2, or a cloud of two points in IR2!). Therefore, one can consider two kinds of
maps, one which is the projection from IR into IR? and the other from IR™ intc
Figure 7 explains this point of view, and allows to introduce the following com:
centering the variables (i.e.; subtracting the mean from all the observed values) can b
as a translation (figure 7A --> 7B) or as a projection (figure 7C). The variance can b
as the dispersion of a cloud (figure 7A and 7B), or as the square of the length of a
(figure 7C). The correlation can be seen as the elongation of a cloud (figure 7A an
or as the angle between two vectors (angle between vectors X and Y or X and
figure 7C), These remarks are derived from the mathematical formalism of the ¢
diagram (Fisher, 1915; Escoufier, 1987).

Figure 6: The measures of three variables (temperature, ammoeniac, nitrate) at 21 loc
can be represented as a cloud of 21 points in IR3. The three axes in this space are the
variables. Data analysis defines a particular plane (ABCD) on which the cloud is prc
(on the left), and onto which we can look to find out the characteristics of the cloud {
right). On this plane, the variables can be represented as the projection of the three a
IR3. The cloud may be then projected onto the horizontal axis (upper part of the g
and represented on this axis with vertical bars proportional to the distance betwee:
point and the plane of projection.

Figure 7: A: n points (i.e.; n measures) in space IR2 (raw data). Point number
coordinates (x;¥;) in the canonical base of IR2. B: n points in space IR? (centered
the cloud has only been translated so that its center has coordinates (0,0). C: two
(i.e.; two variables, X and Y) in space IR2!; point X has coordinates {x1, x2, ..., X
point Y has coordinates (yl1, y2, ..., yn), X, and Y are the centered variables (proj
onto the subspace orthogonal to 1 ).
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2. Graphics and modeling of homogeneous tables.
The first goal of a multivariate approach, like PCA or CFA, is to condense the information
of a data matrix on a graph. According to Ramsay (1989), the following model can be
used to analyze the structure of a data table:

Data = Structural component + residual component + error of observation

These three elements must be separated from each other, and the approach combining
multivariate methods and graphs leads to good results. This can be illustrated from the
work of Slooff et al. (1983) and de Zwart and Slooff (1983) on the relative susceptibility
of 15 taxonomical groups (table 1) to 11 chemicals (table 2).

Table 1. Identity of the organisms.

N° Species Taxonomic level
H Photobacterium phosphoreum Bacteria

2 Daphnia magna Crustacea
3 Daphnia pulex Crustacea
4 Daphnia cucullata Crustacea
5 Aedes aegypti Insects

6 Culex pipiens Insects

7 Hydra oligactis Worms

8 Lymnaea stagnalis Molluscs
9 Leuciscus idus melanotus Fish

10 Salmo gairdneri Fish

11 Poecilia reticulata Fish

12 Oryzias latipes Fish

13 Pimephales promelas Fish
14 Xenopus laevis Amphibia
15 Ambystoma mexicanum Amphibia

Table 2. Test chemicals.

N Name

n-propanol
n-heptanol
Ethyl acetate
Acetone
Trichloroethylene
Allylamine
Aniline
Benzene
Pyridine
o-cresol
Salicylaldehyde

A 00 ~F QA LA B L3N

— o
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From a statistical point of view, we have an homogeneous data matrix of 15 rows (
species) and 11 columns (i.e.; 11 chemicals) (table 3).

Table 3. Row data matrix (toxicities in log pmol/1).

549 224 4382 57 295 246 372

3.48 443 215 207
502 2,75 3.83 543 285 2.83 084 371 4.14 194 1.68
4.7 2,62 347 518 253 277 003 359 385 195 1.65
499 286 3.27 512 264 269 086 3.68 449 218 165
486 3.14 3.6 541 256 332 322 341 322 287 2.12
49 302 465 547 262 348 3 296 292 263 265
5.05 3.14 419 537 276 249 364 2.64 416 2.84 1.76
503 254 41 508 263 194 393 347 365 3.17 1.73
491 244 349 523 321 296 272 3.23 339 222 143
473 2.57 347 511 25 242 266 2856 3.85 2.08 104
5.05 274 338 5.22 3.14 232 303 3.73 424 255 1.63
499 262 3.15 539 331 245 325 351 429 258 1.54
492 247 349 541 255 157 284 303 3.16 2.5 154
482 258 331 562 253 194 378 3.39 425 255 18
482 2,65 3.22 554 256 1.5 3.67 3.68 4.08 257 1.79

It is possible to modify the raw data matrix (table 3) according to various procedi
order to perform different types of Principal Component Analyses. Among the
selected the following procedures:

- non centering (PCA on the matrix of the raw scalar products)

- column centering (PCA on covariance matrix)

- row centering ( PCA on covariance matrix of the transposed table)

- double centering (i.e.; row and column).

All these analyses can be carried out with a non centered PCA progra:
transformations of the input table (general PCA from Lebart er al., 1984). In ¢
following figures, the factor maps are represented in an orthonormal basis (i.e.;
scaling is performed on the factor coordinates).

The first analysis dealing with the non centering procedure can be used when the d

homogeneous and expressed in the same unit (like here, in log pmol/), Tt is perfi
directly on table 3 without any transformation and leads to the graphical display of fi
(F1 x F2 for columns (8A) and rows (8B)). Figure 8A shows an opposition on th
axis between salicylaldehyde (compound 11) and the couple n-propanol (compound
acetone (compound 4). The second axis underlines the particular behavior of a
(compound 7). Figure 8B exhibits a sirong cluster between Daphnia magna (org
number 2), Daphnia pulex (organism number 3), and Daphnia cucullata {org;

:n:&on. 4). Back to the raw data {table 3), one observes that this cluster is due tc
sensitivity to aniline.

The second analysis, performed on table 4, leads to the graphical display of figure 9
F2 for columns (9A) and rows (9B)). From a statistical point of view, table 4 is ob
by centering each column of table 3 (in MacMul, it can be computed by means
“preparation” step in the case of a centered PCA). Figure 9A shows that a
(compound number 7) is an outlier, having a high negative value on the first
Allylamine (compound 6) is opposed to pyridine (compound 9) on the second axis. I
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504
291
43
31

-1
-1
-1
-1
-1

442
244
9909
95
56
8518

-1
-1
-0
-0
-0
-0

8382
9564
5618
7018
2618
1873
8236

it
-0
0.

1118
5264
5218
-0.8182 0O
0.0818
0.0273 ©
-0.1664 0

-0
-0

1282
344
911
27
21
4818
1818
5418

0
-2
2
-2
-0
-0

0

132
3536
1709
44
474
385

-1
-0
-0
-0
-0
-1
-1

0609
-(.4936
-0.7945

........................

6464

0
5291

3209 0O

4336
27

29

-0
-0
-0
-0

...............

Table 4. Data matrix obtained from table 3 by column centering (i.e.; chemicals).
Table 5. Data matrix obtained from table 3 by row centering (i.e.; organisms).
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9B reveals that the Daphnids (organisms number 2, 3, and 4) present a par
ecotoxicological behavior, These three species have high positive coordinates on tt
axis. On the second axis, Culex pipiens (organism number 6) is opposed

amphibians (organisms 14 and 15). A careful inspection of table 3 stresses the stru
of the above figures. Aniline (chemical 7), mostly toxic towards Daphnig magna (org
2), Daphnia pulex (organism 3), and Daphnia cucullata (organism 4), explains the ¢
of these organisms, opposed to the other species. Allylamine (chemical 6) is the mos
towards Amphibians (organisms 14 and 15) and the less towards A aegypti (organi

and C. pipiens {(organism 6). The ecotoxicological behavior of pyridine (compoun
opposed.

The third analysis, performed on table 5, leads to the graphical display of figure 10
F2 for columns (10A) and rows (10B)). The corresponding table (table 5) is obtain
centering each row of table 3 (in MacMul, it can be computed by means ¢
"preparation” step in the case of a centered PCA on the transpose of table 3). The r
are stmilar 10 those obtained with the first approach (see figures 8A and 8B).

The fourth analysis, performed on rable 6, leads to the graphical display of figure 11
F2 for columns (11A) and rows (11B)). The results are similar to those obtained wi
second approach (see figures 9A and 9B),

These different analyses {figures 8 to 11) show that more information can be extr
from an homogeneous data marrix, by performing different centering procedures b
PCA. Thus, the difference between figures 9 and 10 (i.e.; chemical centering
organism centering) can be explained as follows:

- after centering by organisms, a "compound effect” remains in the data table, due 1
differences of toxicity among the chemicals (i.e.: salicylaldehyde is much more
towards all species than acetone and n-propanol). This is usually called a “size effe
PCA, and is represented by the gradient of toxicity on the first axis of figure 10.

- after centering by chemicals , an "organism effect " remains in the data table, due t
differences of sensitivity among species (i.c.; Daphnids are much more sensitive
Molluscs to aniline and p-cresol and the converse is true for allylamine).

As the non-centered analysis is similar to the species-centered, we can conclude that i
original data table, compound effect is predominant as compared to the species effect.
same conclusion can be derived from the similarity between the double centered an
compound-centered analyses.

Confirmation of the above results can be obtained by means of graphical displays o
data tabie itself. Figure 12 shows a collection of maps with circles and squares. Or
first map (figure 12A), the original data table was plotied with circles proportional t
value of the raw toxicity (no centering and no standardization, chemicals in columns
organisms in rows). The "compound effect” is obvious, low toxicity compounds appe
columns of large circles, whereas highly toxic compeunds appear as columns of s
circles. This figure also underlines the fact that, would a "species effect” exist,

completely hidden by the compound effect. Figure 12B is the same representation, bu
the data table after centering by chemicals (this is the table on which the second PCA
performed). The circles are proportional to positive values, and squares are proportion
negative values. The compound effect has disappeared as expected, but the species e
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Table 6. Data matrix obtained from table 3 by double (row and column) centering.

0.2275 -0.7625 0.8135 0.0375 -0.1165 -0.3265 0.6635 -0.1885 02441 -0.6125 0.0208
0.1656 0.1556 02316 0.1756 0.1916 04516 -1.808  0.4496 03623 -0.4144 0.039
0.0884 0.2684 0.1144 0.1684 0.1144 0.6344 -2376 05724 0325 -0.1616 02517
0.1893 0.3193 -0.2747 -0.0807 0.0353 0.3653 -1.735 04733 07659 -0.1207 0.0626
-0.2407 0.2993 -0.2447 -0.0907 -0.3447 0.6953 03253 -0.0967 -0.8041 0.2693 0.2326
-0.2525 0.1275 0.7535 -0.0825 -0.3365 0.8035 0.0535 -0.5985 -1.156 -0.0225 0.7108
-0.0789 0.2711 03171 -0.158% -0.1729 -0.1629 07171 -0.8949 0.1078 0.2111 -0.1556
-0.0289 -0.2589 0.2971 -0.3789 -0.2329 -0.6429 1.077 - 0.0051 -0.3322 0.6111 -0.1156
0.0365 -0.1735 -0.1275 -0.0435 0.5325 0.5625 0.0525 -0.0495 -0.4068 -0.1535 -0.2301
0.0329 0.132¢  0.0289 0.0129 -0.0011 0.1989 0.1689 -0.2431 0.2296 -0.1171 -0.4438
0.0126 -0.0371 -0.4011 -0.2171 02989 -0.2411 (,1980 0.2869 02796 0.0129 -0.1938
-0.0516 -0.1616 -0.6356 -0.0516 0.4644 -0.1156 04144 00624 0325 0.0384 -0.2883
0.2056 0.0156 0.0316 02956 0.0316 -0.6684 03316 -0.0904 -0.4777 02856 0.039
-0.1753 -0.1553 -0.4293 0.2247 -0.2693 -0.5793 09907 -0.0113 0.3314 0.0547 0.0181
-0.1307 -0.0407- -0.4747 0.1893 -0.1947 -0.9747 09253 03233 0.2059 0.1193 0.0526
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Figure 11: Factor maps of the first PCA (doubly
centered analysis). 11A: Factor map of the 11
compounds. 11B: Factor map for the 15 organisms.
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is still not very high. The only visible structure is the high sensitivity of the trout (St
gairdneri, organism number 10) to most of the compounds (all the values are negat
Figure 12C shows the table after double (rows and columns) centering. There is no r
row or column effect, but interactions may still be present. This is clearly stressed by
reorganization of the rows and columns which is performed in figure 12D: the rows
columns on this figure are now positioned according to their coordinates on the first fi
of the PCA (fourth analysis), but the values plotted are identical (i.e.; the doubly cent
data table). The interaction between aniline and Daphnids is abvious. The next step

find out whether other interactions subsist after removing the previous one, or not.

can be achieved by computing the differences between the data set (doubly centered)
the reconstitution of the data by the first factor of the PCA. The result is plotted in fi
12E, and shows another interaction between Insects and pyridine (as quoted abos
figure 9). This procedure could be followed up by computing the difference betweer
data set and the reconstitution of the data by the first two factors. The answer tc
question "when should this procedure be stopped 7" is given in figure 12F: the decrea:
the following eigenvalues is slow and regular, thus indicating that the variability remai
in the table is random, or may be attributed to observational error.

In addition to the possibilities offered by manipulations and graphical representatior
the input table, we can extract still more information from data by using graphi
improved factor maps. Thus, if we consider the results of the compound-centered PC
good graphical technigue consists in plotting the input data over the factorial map.
way to achieve this purpose is to draw pictures on the factorial planes with &
proportional to the toxicity. Their location on the graph is given by the coordinates o
compourd and species points. Squares and circles are used according to the sign o
plotted values. The sign (+/-) can be recalled in the center of the picture.

On figure 13, we have represented a collection of 11 factorial maps for the species
map per compound). On each map, the size of circles and squares is proportional t
values of the corresponding column in table 4. The main advantage of this representati
that it allows a direct interpretation of the factorial map without the necessity of loo
back at the raw data matrix. Furthermore, one have a good view of the overall variat
of the toxicity of each compound for the different species. For example, on figure 13
see that the cluster of Daphnids is due to their high sensitivity to aniline (large circles
negative values), their same ecotoxicological behavior towards benzene (equal size pos
squares), and s0 on.

Figure 14 is the reciprocal representation: we draw a collection of 15 factorial maps fc
compounds (one map per species). Interpretation is similar to the above figure, bu
comparison between species is more fruitful: one can observe for example the partis
ecotoxicological behavior of Photobacterium phosphoreum and Saimo gairdneri.
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Figure 12: Graphical representations allowing to model the data table (15 organisms in
rows, 11 compounds in columns). 12A: circles are propoertional to the original data. 12B:
centering by compound (circles are proportional to positive values, squares to negative).
12C: double centering. 12D: double centering with rows and columns positioned
according to their factor scores. 12E: residuals after modeling by the first factor from
PCA (rows and columns positioned according to their factor scores). 12F: eigenvalues.
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Figure 13: collection of 11 factorial maps (one for each compound). On
nwn: map, Eo centered value of the 1oxicity have been represented by a
circle (negative values} or a square (positive values).
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Figure 14: collection of 15 factorial maps (one for each organism), For caption, see figure 13.
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3. Canonical graphs and duality in PCA.

In QS AR studies, the biological activity is traditionally related to the molecular des:
by means of multiple regression analyses (Dearden and Nicholson, 1986; Calam
Vighi, 1987; Devillers et al., 1988; Schultz, meqw Nendza and Seydel, 1988; Ha
al., 1989; Warne et al., 1989). There are statistical drawbacks o using such ai
when for example, the molecular descriptors are too intercorrelated {Deville
Chambon, 1989; Devillers ef al., 1989; UoS:B.m.m:a Lipnick, 1990). To overcor
problem it is possible to use PCA to define new independent variables which are
combinations of the original molecular descriptors. These variables, called pr
components, can be introduced in regression analysis procedures, However, this s
is powerful only if we can clearly interpret the components selected in the model. Tl
of this paragraph is to introduce a new graphical method allowing to solve this probl
The data used in this study were secured from Moulton and Schultz (1986). It conct
para-substituted pyridines tested on Terrahymena pyriformis. The toxicity values
population growth inhibition) were expressed as the logarithm of the inverse of th
concentration in moles/l (log BR). Each chemical was described by means of the fol
six molecular descriptors: the corrected molar volume term of molar refractivity (M

single bond fragment molecular connectivity index, !X'gy, ; the hydrophebic para
Pi; the para position Hammett electronic constant, op; the field electronic parameter,

the resonance electronic parameter, R. The values of the toxicity data and mol
descriptors are listed in table 7.

Table 7. Molecular descriptors and biological response for 20 selected four-p
pyridines.

Derivative MR X" Pi__op F R logBR
H 103 0 0 0 0 0 -1.327
CH; 565 05 056 -0.17 -004 -0.13 -0.895
CHyCH; 103  1.061 1.02 -0.15 -0.05 -0.1  -0.297
a 603 0598 071 023 041 -0.2  -0.862
Br 888 035 086 023 044 017 -031
CN 633 0474 -057 066 051 019 -0.819
COCH; 1118 0.704 -055 05 032 02  -0.835
CHO 6.88 0525 -0.65 042 031 0.3 -0.159
COCgHs 3033 2364 1.05 043 031 0.16 -0.093
OCOCH; 1247 0816 -0.64 031 041 -007 -0.814
NH, 547 0289 -123 -0.66 002 -0.68 -0.439
OH 2.85 0224 -0.67 -037 029 -0.64 -1587
N(CHz), 1555 0.816 0.18 -083 0.1 -092 -0.635
CH,OH 7.19 057 -1.03 0 0 0 -1.329
COOH 693 0.678 -032 045 033 0.15 -1.386
CHNOH 1028 0458 -038 0. 025 -0.13 -0.547
CONH, 9.81 0493 -149 036 024 014 -1.015
CeHs 2536 191 196 -001 0.08 -0.08 0.664

CH;CgHs  30.01 2.264 201 -0.09 -008 -0.01 0.676
C(CH3)3 19.62 1.5 198 -0.2 -007 -0.13 0.164
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A standardized PCA was first performed on the six molecular descriptors of table 7. The
classical factorial maps are displayed in figure 15 (figure 15A: comelation circle; figure
15B: chemical map). The correlation circle shows that the first factor has a high correlation

coefficient with Pi, MR, and 1X";,, (i.¢.; basically to the size of the molecules). The
$ )

second factor is related to op and R, and in a lower part to F, and can be interpreted as an
electronic parameter. These results agree with those from Moulton and Schultz (1986).
The chemical map confirms this interpretation, with the dichotomy between large and small
molecules on the first axis, and the distribution of the chemicals on the second axis
principally according to an electronic gradient.

In order to use these factors in regression analyses for predicting Tetrahymena toxicities, it
is necessary to have an accurate idea of their relationships (which may be non linear) to
each molecular descriptor. The best way to assess these relationships is to draw all the
graphs representing the values of each molecular descriptor as a function of each factor.
This method, called PCA canonical graph, is based on the property of components to
maximize the correlation with the initial variables.

Figure 16 (A 10 F) is a collection of such graphs for the first factor and the six molecular
descriptors under study (standardized values). Figure 16G shows the same relaticnship
between the first factor and toxicity (log BR). The value of the linear correlation coefficient
(r) and the corresponding significance probability (p) are listed in each elementary graph.

The same approach has been used for the second factor (figure 17, A to G). Figure 16
underlines positive linear correlations between the first principal component and the three

following molecular descriptors: Pi, MR, and 'X"y,,. This is not surprising if we consider
the position of these molecular descriptors in the correlation circle (figure 15A). Figure
16G stresses the same type of relationship. Therefore, we ¢an conclude that the first factor
can be used as an explicative variable in regression analyses to summarize the

physicochemical information encoded by Pi, MR, and 1X"g ;.. Figure 17 displays a strong

comelation between the second component and op, and significant correlations with F and
R, but no relationship is found with the toxicity. As a conclusion, this factor is not relevant
to predict the toxicity of the 20 pyridines on Tetrahymena pyriformis.

Figure 18 illustrates the geometrical point of view introduced in paragraph 1.5 the toxicity
(log BR) is projected as an additional variable in the PCA. The corresponding geometric
interpretation consists of the projection of the vector representing the toxicity (a vector of
IR20, with 20 coordinates) onto the plane defined by the first two principal components.
On figure 18, the angles between vectors represent the correlation between the
corresponding variables. The bundle-of vectors corresponding to molecular descriptors Pi,
MR, and X"y, is very narrow and nearly parallel to the first principal component (and
consequently nearly orthogonal to the second). The projection of the vector corresponding
1o toxicity falls among this bundle. The bundle of vectors corresponding to molecular
descriptors F, op and R is less narrow and is in opposite direction to the second principal
component. This is an alternative way to see the relationships depicted in figures 16 and

:.m:&omsﬁﬁm:nnmnnnﬁ&noauouo:awaw:mnnarnmcaOmﬁrnma:ﬁnmnon&mmgm
with all the variables. :
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Figure 15: Results of the PCA on the molecular descriptors
from table 10. 15A: correlation circle, 15B: chemical map.
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Figure 16: Canonical representation in PCA: the values of each G . i

standardized molecular descriptor (A to F) or toxicity (G) is

plotted versus the first principal component Figure 17: Canonical representation in PCA: the values of each

standardized molecular descriptor {A to F) or toxicity (G) is
plotted versus the second principal component.
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Figure 18: Correlation circle with toxicity (log BR)
projected as additional element.

4. Discrimination, between-groups PCA, and graphical display.

Numerous structure-activity relationships (SAR) studies are based on discriminant ar
(DA) (de Flora et al., 1985; Benigni and Giuliani, 1987; Devillers et al., 1987; Ens,
al., 1988; Niemi ez al., 1987). This method is very powerful when the activiti
boolean (e.g.; mutagenicity) and/or when they are not measured with accuracy. Hov
the outputs of these analyses are often limited to numerical tables with a percent:
good classification, the discriminating power of the molecular descriptors and so o1
scope of this paragraph is principally to show the heuristic potency of the graj
analysis in SAR. Toreach this goal, a data matrix of 70 sweet (class 1), 17 tasteless
2), and 2} bitter (class 3) L-aspartyl dipeptides (L-Asp-NH-R), encoded by
physicochemical descriptors (MR, L, W, W), W, W;;, and 6*, numbered from 1 ¢
the maps), has been selected in the literature (Miyashita er al., 1986). The
molecular descriptors are listed in table 8. Table 9 gives the chemical stru
configuration and taste quality of the dipeptides under study.

Table 8. Class of activity and molecular descriptors.

no. Class MR L W W) W, Wy c*

1 1 393 8.33 315 276 311 316  0.03
2 1 44 8.33 315 276 316 316 -0.12
3 1 40.8 833 315 276 311 316  0.29
4 1 42.6 9.01 315 276 311 316 026
5 1 40.6 822 494 276 316 316 -0.26
6 1 40.6 822 494 276 316 316 -0.26
7 1 336 822 587 276 19 316 -0.27
8 1 33.6 678 518 276 316 3.16 -0.26
9 1 33.6 6.78 518 276 316 3.16 -0.26
10 1 38 903 639 276 19 316 -027
11 1 28.8 697 494 276 19 316 -0.26
121 359 822 494 152 316 3.16 -0.16
13 1 16.5 398 428 152 19 1.9 0.32
14 1 25.8 804 571 152 19 19 0.82
15 L 25.8 6.59 503 152 316 316 0.82
16 1 30.4 886 621 152 19 19 0.82
17 1 37.5 797 671 152 316 3.16 082
13 1 21.1 678 481 152 19 19 0.28
19 1 30.4 80l 554 152 316 316  0.28
20 1 36 659 503 276 316 316 (.62
21 1 21.1 598 428 276 1.9 316 072
22 1 25.7 6.79 478 276 19 316 072
23 1 30.3 804 571 276 19 316 072
24 1 30.3 659 503 276 316 316 072
25 1 34.9 8.86 621 276 19 316 072
26 1 395 101 715 276 19 316  0.72
27 1 42.1 797 671 276 316 316 0.72
28 1 25.7 8.03 573 152 19 19 0.1
29 1 25.7 598 428 276 19 316 071
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Table 9: Chemical structure, configuration and taste quality of 108 L-aspartyl dipeptides (L- Asp-NH-R)

no. NH-R Config. Taste no. NH-R Cenfig. Taste
1 hEZoYOEVI@ L. sweet 21 Ala-OMe D sweel
2 -nE%.an@ sweet 22 Ala-OEt D swee
3 .Omnﬂznomv.ﬁmn\I@ L sweel 23 Ala-OPr ° D sweet
4 .nmﬁzpomﬁmp-a.omu\@ L sweet 24 Ala-OPr ! D sweet
5 .nmhgav,oxu.\o L swest 25 Ala-OBu * D sweet
6 .CH(Me)-CH2- io b sweet 26 Ala-Pen D sweet
7 -CH(Me)-Pen L sweet 27 Ew.O‘IO D sweet
8 -CH(Me)-Pe i L sweet 28 y-Abu-OMe sweet
9 -CH(Me)-Pe D sweet 29 Abu-CMe D sweet
10 -CH(Me)-He™ L sweet 30 (a-Et)-Abu-OPr i sweet
11 -CH(Me)-Bu" L sweet 11 Abu-OPr » D sweet
12 .Q.sh:p.lo sweet 32 Abu-OPr i D swest
13 Gly-OMe Sweet 33 NVa-OMe L sweet
14 Gly-OPr Sweet 34 Val-OPr D sweet
15 Gly-OPr ! sweet 35 Val-Opr i o] sweet
16 Gly-OBu™ sweet 36 (@-Me)}Val-OPri D sweet
o o;.olo swest 37 NVaOPr ® D sweat
18 B-Ala-OMe sweel 38 NLe.OMe L sweet
19 p-Ala-OPri sweet 19 NLe.OEx L sweet
20 (-Me)Ala-OPr i sweet 40TLe.OPy | D sweet
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Tabie 9 (continued)

no. NH-R

no. NH-R Config. Taste Config. T
41 HyNle-OMe (erythro) L swect 61 aThr-OMe D s
42 HyNle-OMe (threo) L  sweet 62 aThr-OPr » D s
43 Cap-OMe L sweet 63 aThr-OPr i D s
44 Phe-OMe L sweet 64 Lys(Ac)>OMe L s
45 HPhe-OMe L sweet 65 Om(Ac)}OMe L s
46 (p-NHz)-Phe-OMe L sweet 66 Glu-(OMe)2 L =
47 Tyr-OMe L sweet 67 EHAOQ )-OMe s
48 Ser(Buti)-OMe L sweet 68 ..:EOO )-OMe E
49 Ser(Bu')-OMe L sweet 69 gonU )-OMe s
50 Ser-OMe D sweet 70 pma(o va )-OMe s
51 Ser-OEt D sweel 71 -CH(Me)-CHz- I@ D ®
52 Ser-OPr ® D sweet 72 CHa.CHa 1@ "
53 Ser-OPr ! D sweet 73 -CH(Me)-Prn D i
54 Ser-OBu ™ D sweet 74 -CH(Me)-Pr n L
55 Ser-OBu ! D sweet 75 CH(Me)-Pe? D w
36 ma.oIO D swest 76 Abu.OMe L u
57 Met-OMe L sweet 77 Phe-NHz L
58 Thr-OMe D sweet 78 h:ﬁoo:ehmm.ibmv-l@ D u
39 Thr-CPr D sweet 79 .nEnOOthE-@bEI@ D u
80 Th-OPr ¢ D sweet 80 -CH(COOMe}-CH2-(m-OH, u.ozsl@ L u

Thioulouse, J., J. Devillers, D. Chessel, and Y. Auda. 1991. Graphical techniques for multidimensional data analysis. Pages 153-205
in J. Devillers and W. Karcher, editors. Applied Multivariate Analysis in SAR and Environmental Studies. Kluwer Academic

Publishers.

http://pbil.univ-lyon1.fr/R/articles/arti067.pdf



189
Table 9 (continued)
no. NH-R Config. Taste no, NHR Config. Taste
81 -CH(COOMe)-CH2-(m, .e.oZuT@ L tasteless 95 Leu-OPr i D bitter
82 Ser-OMe L tasteless 96 ILeu-OMe L biter
83 Met-OMe D tasteless 97 Cap-OEt ,—.. bitter
84 Cys(Me(02))-OMe L tasteless 98 Phe L bitter
85 Tyr-OMe D tasteless 99 Phe-NHMe L bitter
86 Thr-CMe L tasteless 100 Phe-N{Me) L bitter
87 Tyr-NHz L tasteless 101 Phe-OMe D bitter
88 .nEZ&hE.I@I.z.:.mOuhmu L bitter 102 Thr(COPr )-OMe L bitter
89 -CH(Me)-Bu' D bitter 103 Lys-OMe L bitter
90 -CH(Me)-Bul L bitter 104 Trp-OMe L bitter
91 Ala-OMe L  bitter 105 Trp-OMe D bitter
92 Val-OMe L biter 106 Tyr L bitter
93 NVal-OF1 L  bitter 107 Tyr-NHMe L bitter
94 Leu-OMe L biter 108 Tyr-N(Me)2 L bitter

Other abbreviations used (Ariyoshi, 1976) : Pr™ s-propyk; Pr 1, i-propyl; Bu®, n-butyl; But |, i-butyroyl: Pe 0, n-pentyl;

Pe i, i-pentyl; He &, a-hexyl; Bu t, tert-buryl; Cap, capryline = o-aminooctanoic acid; aThr, allothrecnine; HyNle,

B-hydroxynorleucine; HPhe, B-cyclohexyl-c-alanine.
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The classical display of the results obtained with discriminant analysis is shown in fig
19. It presents the factorial maps (F1xF2) for the three classes of activity (194, 1
19C), and for the three groups superimposed (19D). One can already notice that
discrimination between classes is not accurate. From a .m>_~ point of view, it is interesi
1o note the three groups of outliers in figure 19A (chemicals number 1 to0 4; 14, 16, and
44, 46, and 47). To improve this display, and find out which molecular descriptor has
best discriminating power, it is possible to look at the distribution of each molec
descriptor, and compare it to the distribution of the &mnnnz.nm:n functions built by
analysis, as well as those computed from other analyses. Figure 20 summarizes th
information: the Gauss curves are used to model the distribution of each molec:
descriptor, The correlation ratio for each descriptor is listed in each graph. It is easy to
that only descriptors W, W, and Wy provide a discrimination between sweet and .
sweet compounds. The curves for discriminant functions show that only the first fa
has a good discriminating power, as opposed to plain PCA.

We recently showed (Dolédec and Chessel, 1987) the interest of within groups
between groups PCA in the statistical analysis of physicochemical data. For compari
purposes, the “between groups” method has been used on the data matrix under st
(table 8). The distribution of the first two factors, modeled with Gauss curves in figure
are very close from those of the discriminant functions. Thus, it was not useful to perfi
the discriminant analysis, especially if we consider that a simple PCA program allow
carry out these two particular PCA: the "between" analysis consists of a PCA on the t
of the means per class (table 10), followed by a projection of the rows of the standard;
table as additional elements, and the within analysis consists of a PCA on the differer
between the actual values and the means per classes.

‘Table 10. Means of molecular descriptors (columns) for the three taste classes (rows).

Class MR L W, W Wy Wy o*

1 -0.1526  -0.0607 0.2995 -0.1622 -0.0312  0.1193  0.0403
2 0.0130 0.1006 -0.4733 -0.0086  0.6395 -0.7408 -0.2193
3 0.4983  0.1208 -0.6151 0.5478  0.5230  0.2622  0.0433

A confirmation of these interpretations can be readily obtained by plotting the value
each molecular descriptor for all chemicals. Figure 21 displays the values of table 8 :
standardization, For W,, the difference between sweet and non-sweet is obvious: alr
all sweet chemicals have positive values, and non-sweet negative ones. Moreover,
outliers detected in figure 10A are clearly visible: chemicals number 1, 2, 3, 4, 44, 46,
47 have highly negative values whereas they are sweet. For molecular descriptor numt
(W), it is interesting to note that extreme values (1.90 or 4.29 in table 8) ha
discriminating power (sweet compounds have low values and tasteless or bitter have |
values) while mean values (3.16 in table 8) have not (sweet, tasteless and b
compounds may have intermediate values).

Miyashita et al. (1986) used the SIMCA method (Wold and S$josadm, 1977) to fi
structure-taste relationship on the 108 compounds under study (tables 8 and 9).
SIMCA method is another variation of PCA, and their results are very close from tho:
the above PCA. Therefore we can state that all the above multivariate analyses are not
to clearly separate the three classes of activity. The only undoubted discriming
concerns sweet and non-sweet.
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5. Graphical display of three-ways table analyses.

Several data analysis methods have been developed to study three-way tables. Among
them, the French school of data analysis has presented the STATIS method (L'Hermier
des plantes, 1976; Escoufier, 1980; Lavit, 1988). Three-mode principal component
analysis (Tucker, 1966; Kroonenberg, £983, 1989) is another approach of this question.
Partial triadic analysis (Thioulouse and Chessel, 1987), derived from triadic analysis
(Jaffrenou, 1978), is suitable for quantitative variables, when there is no missing data. The
work of Jenkins and Buikema {1990) on the response of a winter plankton food web to
simazine offers a good example of three-way table on which partial triadic analysis can be
applied. The data set consists of four physicochemical parameters (temperature, pH,
dissolved oxygen, and nitrate concentration) measured four times with an interval of seven
days between measurements, in four microcosms experimentally contaminated by three
concentrations of simazine plus one control. Data are listed in table 11.

Table 11. Physicochemical parameters affected by simazine and time (in days).

Days DO D7 D14 D21 Simazine
(mg/l)
Temp.(°C) 9.10 2.20 7.70 9.90 0
pH 7.60 7.20 7.70 8.40 0
O, (% Sat.) 8570 9550 8730  87.30 0
NO, (mg/l) 0.24 0.06 0.05 0.55 0
Temp.(°C) 9.30 1.40 750  10.00 0.1
pH 7.60 7.60 7.70 8.30 0.1
0, (% Sat.) 8700 9370  89.00  84.00 0.1
NO; (mg/l) 0.25 0.07 0.05 059 0.1
Temp.(°C) .00 1.40 7.00 9.80 0.5
pH 7.50 7.30 7.50 7.70 0.5
0O, (% Sat.) 8470  90.00  68.00  68.70 0.5
NO; (mg/l) 0.25 0.18 0.15 0.70 0.5
Temp.(°C) 9.10 1.70 750  10.00 1.0
pH 7.50 7.40 7.40 7.30 1.0
0, (% Sat.) 8530  79.50  69.00  54.50 1.0
NO, (mg/l) 0.27 0.23 0.23 0.97 1.0

Figure 22 shows the different steps of this analysis. More details can be found in

Thioulouse and Chessel (1987), and an example of use in Cadet and Thioulouse (1989).

The first step of triadic analysis is called "Global analysis", and gives an overall insight of

the between-dates structure. The second, called "Compromise” is aimed at finding an

average table, as close as possible from all tables. The last is called "Close-up analysis”

M_a gives a detailed description of each item (i.e.; concentrations and variables) at each
ate.

:

7] 1
%a -] 5 .Waw»nu
12 P QA
h \I\ /- \r\ 7, nf o
Xg i v vy -] A pll P =
112 P t ]
1 SRS N 1
date i -
i N i daidi ” N.r _ =
. 4 ” PCA E
MMHP ” (Global analysls) [
12 P w ] N B el =
Standardization W date d
+*
Reorganization
2,
%
\osv
L/ p
F2
Compromise
12 Pl [PCA
1 praany (Close-up
analysis)
i {EEELITEFERRLENTT Ft
F2
Fi

Figure 22: General principle of partial triadic analysis. The series of tables (X1, ...,
XX, ..., Xt) is standardized (each variable is transformed to have zero mean and unit
variance) and is merged into one table after reorganization. Each table thus becomes
one column of the new table. A {non) centered PCA is performed on this table (global
analysis) and the first factor (F1) is reorganized to obtain a new table having the same
structure (rows and columns) as one of the initial tables. This new table is called the
compromise. A second (non) centered PCA is performed on this new table, and all the
rows and columns of all the initial tables are projected as additional elements in this
analysis (close-up analysis).
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Figure 23: Factor maps of the rows of global analysis (the four maps correspond
to the four concentrations).

Figure 23 represents the graph of the rows for the global analysis. The four maps
correspond to the four concentrations, and in each map the four variables are
displayed. The main feature is the opposition between the two following couples
of concentrations: ¢ - 0.1 mg/l and 0.5 - 1.0 mg/] (see the position of the four
variables in figures 23A - 23B and in figures 23C - 23D). In figures 23C and
23D, the opposition between oxygen and nitrate is due to the decrease of the
percentage of oxygen and the increase of nitrate concentration (see table 11).

The selection mechanism of the rows in the QB@:?E program (Thioulouse,
1989, 1990) allows to easily redraw figure 23 with & reorganization of the points
according 10 the variables instead of the concentrations (figure 24). This new
presentation allows to stress that the temperature (figure 24A) is not influenced
by the concentration of simazine while pH, 02, and NO3 are. Indeed, the aspect
of the trajectory of pH {figure 24B) and oxygen {figure 24C) points reveals that
these physicochemical parameters decrease when the concentrations of simazine
increase. The converse is true for nitrate (figure 24D).

T O2

0.1

\f/mu 0.5
i i 4

ﬂ\ 0.5

Figure 24: Factor maps of the rows of giobal analysis (the four maps correspond
10 the four variables).
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m_mﬁm 25 represents the graph of the columns for the global analysis, It clearly shows that
there is an evolution of the structure of the physicochemical parameters with time. The
opposition between day seven and day 21 can be related to the fact that the concentration of
nirate increases during the experiment, whereas the dissolved oxygen decreases.

Figure 25: Factor maps of the columns of global analysis (i.e.; the four dates).

w/

D14

DO

D21

A

B

0.5

.1 ﬁ

0

NO3
l_l

+T

+pH

Figure 26: Compromise analysis. 26A: representation of the four concentrations. 26B:
representation of the four physicochemical variables.

Figures 26A (concentrations) and 26B (variables) represent the compromise analysis.
They do not give more information due to the simplicity of the structure of the example,

but this compromise is necessary for the last step of partial triadic analysis. Indeed, t
close-up analysis merely consists of a projection of the rows and columns of the init
table (table 11, after reorganization and standardization) into this compromise analys
Figures 27 and 28 confirm the results obtained with figures 24 and 25 but stress t
evolution of the time structure as a function of the simazine concentrations (figure 27) a
reciprocally (figure 28).

0 mg/l 0.5 mg/l
D14 D21
+ +
D7 ,
|+ Do Y o
+
D14
D21
+
1

0.1 mg/l 1 mg/i D21

D14

+
+
DO D7 +
| D7 * I Do
+ +
D14 D21
+
1 1

Figure 27: Close-up analysis. Representation of the four dates for each concentration.
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Figure 28: Close-up analysis. Representation of the four concentrations at each date.

These results agree with those from Jenkins and Buikema (1990), but the graphical
approach gives a clearer view of the interactions between the different parameters involved
in the contamination process by the herbicide under study.

6. Conclusion.

Multivariate methods are required to analyze large data sets. In this context, pictures a
graphs play a key role in making easier for biologists the understanding of statisti
methods and the interpretation of the results obtained by these methods. Howev
classical factor maps are not necessarily the best way to represent the characterist
stressed by analyses. OQur examples show that factor coordinates can be considered
useful numerical codes, which can be used to draw various kinds of graphical displays.

PCA coordinates of homogeneous toxicity tables provide an ordination which can be us
to represent the original values (figure 12D), but they also provide a model to reconstit
the data set, compute residuals from this model, and draw it in the same way (figure 12
Conversely, the toxicity of compounds can be projected onto the factor map, to ma
easier the interpretation of the factors and the characteristics of each line and colnt
(organisms and compounds) of the table (figures 13 and 14).

The canonical graphical display for representing the correlations between fac
coordinates and original data values is shown in figures 16 and 17. It clearly shows whi
variables are well correlated to each factor. From another point of view, the projection
the predicted variable into the correlation circle (figure 18) also shows its degree
correlation with the factors.

Gauss curves are helptul 1o model the distribution of factor scores, and compare it to 1
distribution of original variables: this feature is particularly interesting for discrimin:
analysis, as it allows to detect which variables and factors have strong discriminati
power (figure 20). Representation of original data (after centering or standardization) w
vertical bars (figure 21) also helps in understanding the structuration of the data set, a
detecting abnormal values.

Lastly, collections of factor maps can be used to analyze data sets with complex structu
and particularly multi-way tables. The criterion used to build the coilection is ve
important, and figures 23 and 24 show that the same coordinates can stress differt
structures according to the way they are grouped.

Graphics and multivariate data analysis require a large amount of computation, and th
routine application in practice would be quite impossible without the aid of power
computer-based interactive graphical display systems like MacMul, GraphMu, a
ADECO. Information on these systems can be obtained from the authors.

7. Software availability.

MacMul and GraphMu are freely available on the Internet network by anonymous FTP
biomol.univ-lyonl.fr (134.214.100.42). They are also available in several archive serve
in the info-mac archive by anonymous FTP to sumex.stanford.edu (and also
wuarchive.wustl.edu), or by e-mail on BITNET to the file serve
FILESERV@IRLEARN in Europe, or LISTSERV@RICEVM]1 in the USA, or
BITFTP (BITFTP@PUCC), One can also find them in the statlib server (send a 'he
mail to the server, at statlib@lib.stat.cmu.edu) ’
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