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Abstract. In this paper, we present a statistical method called STATICO that can be
used to analyze series of pairs of ecological tables. The objective of this method is to find
the stable part in the dynamics of the relationships between the species and their environ-
ment. The treated data are a sequence of pairs of ecological tables. Each pair is made of
a species abundance table (species in columns) and an environmental variables table (var-
iables in columns). The sampling sites (in rows) must be the same for the two tables of
one pair, but they may be different among the pairs. The environmental variables must be
the same in all the environmental tables, and the list of species must be the same in all
the species tables too, although some species may be absent from some tables (the cor-
responding columns will contain all zeros). From a statistical point of view, STATICO is
a multitable analysis (partial triadic analysis) performed on the series of cross-tables re-
sulting from the co-inertia analysis of each pair of tables. A small ecological example data
set is analyzed and the results are discussed to show how this method can be used to extract
the stable part of species–environment relationships. All computations and graphical dis-
plays can be performed with free software available on Internet.

Key words: ADE-4; canonical correspondence analysis; co-inertia analysis; compromise; inter-
structure; partial triadic analysis; redundancy analysis; series of paired ecological tables; STATICO;
STATIS; three-way table.

INTRODUCTION

The analysis of two data tables by multivariate anal-
ysis methods leads to two ordinations of the sampling
sites. When the two tables make up an ecological pair
(one table containing species composition and the other
one environmental conditions for the same sampling
sites), the relationships between these two ordinations
are interesting to explore. In this case, the structure
common to these two ordinations (called the co-struc-
ture) can be analyzed by canonical correspondence
analysis (CCA, ter Braak 1986), redundancy analysis
(RDA, Wollenberg 1977), or co-inertia analysis (Do-
lédec and Chessel 1994).

When the pair of ecological tables is repeated, for
example in time or in space, one can try to examine
the temporal or spatial stability of the relationships
between the two tables. Within-class and between-class
co-inertia analysis (Franquet and Chessel 1994, Fran-
quet et al. 1995) were proposed with this aim, consid-
ering each repetition of the pair as a class. More re-
cently, Simier et al. (1999) have proposed the STA-
TICO (STATIS and CO-inertia) method, which is an
application of the STATIS (Structuration des TAbleaux
à Trois Indices de la Statistique) method (Lavit et al.
1994) to co-inertia operators. In fact, STATICO is a
partial triadic analysis (PTA, Thioulouse and Chessel
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1987) of the series of cross-tables coming from the co-
inertia analyses performed on each pair of tables. This
method combines the objectives of STATIS (finding
the stable part of the structure of a series of tables) and
the objectives of co-inertia analysis (finding the com-
mon structure of two data tables). The advantage of
STATICO over within-class and between-class co-in-
ertia analysis and other ad hoc methods is that it pro-
vides a complete and consistent analysis framework,
with a much stronger mathematical background. It of-
fers a detailed pathway through the numerous steps of
analyzing a sequence of paired ecological tables, with
a rigorous and reproducible approach, and many graph-
ical aids.

Starting from an ecological standpoint, we describe
the advantages of the method and compare it to other
ad hoc approaches. We discuss the advantages of using
co-inertia analysis in this context over CCA or RDA.
The mathematical description of co-inertia analysis,
PTA, and STATICO are presented in several appen-
dices using simple matrix notations. We present an ap-
plication of the method using a simple ecological data
set, with a detailed appendix enabling users to redo all
the computations step by step.

METHODOLOGICAL BASES

Co-inertia analysis

Co-inertia analysis belongs to the family of two-table
coupling methods, which include canonical correspon-
dence analysis (CCA), redundancy analysis (RDA), and
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canonical analysis (Gittins 1985). However, co-inertia
analysis differs in two ways from CCA and RDA, and
also from canonical analysis. The principle of co-in-
ertia analysis is very simple: it searches for axes that
maximize the covariance between the row coordinates
of the two tables. This principle is similar to that of
canonical analysis, except that the covariance is max-
imized in co-inertia analysis, instead of the correlation
as in canonical analysis. An important step in co-inertia
analysis is the computation of a cross-table. For ex-
ample, in the case of a PCA–PCA co-inertia analysis
(i.e., a co-inertia analysis coupling two principal com-
ponents analyses, which is exactly the inter-battery
analysis of Tucker [1958]), this cross-table contains the
cross-covariances between the variables of the two ta-
bles. Appendix A gives a formal description of co-
inertia analysis in matrix form.

Two-table coupling methods can be separated into
symmetric and asymmetric methods, according to the
way the two tables are treated. CCA and RDA are often
seen as asymmetric methods, because the focus of the
analysis is on the species table, considered as repre-
senting a response to environmental forcings. Indeed,
in CCA and RDA there is a regression step ensuring
that sampling scores are linear combinations of envi-
ronmental variables. From this point of view, canonical
analysis and co-inertia analysis are symmetric, because
the two tables have symmetric roles in the analysis.
They are different however, because in co-inertia anal-
ysis there is no regression step, while canonical anal-
ysis can be seen as a double reciprocal multiple re-
gression (Lebart et al. 1984: Chapter III).

These methodological differences between symmet-
ric and asymmetric methods have important conse-
quences when considering the properties of the meth-
ods: the regression step implies that in CCA, RDA, and
canonical analysis, the number of samples must be high
compared to the number of environmental variables.
Co-inertia analysis comprises no regression step and
does not have this constraint. Dray et al. (2003) show
the importance of this problem when comparing CCA
and co-inertia analysis results, and the potential draw-
backs of the regression step.

But there is another dissymmetry that has more bi-
ological meaning, and one where co-inertia analysis
has still more advantages. It is the dissymmetry in the
biological meaning of the two tables, and in the way
that this meaning is taken into account by the analysis.
In this sense, RDA is a symmetric method, while CCA
is an asymmetric method: in RDA, both tables are an-
alyzed by a PCA, while in CCA, one table is analyzed
by a PCA and the other by a correspondence analysis
(CA). In the same way, a PCA–PCA co-inertia analysis
is a symmetric method, while a PCA–CA co-inertia
analysis is an asymmetric method. In RDA and in a
PCA–PCA co-inertia analysis, the scalar product be-
tween two columns x and y (one in each table) is equal
to the covariance between the two columns: ,xzy.Dn

5 1/nj Si xiyi 5 cov(x, y), n being the number of sam-
ples. This is why RDA is considered as a method that
can only be used when the species response curve along
the ecological gradient is linear: the scalar product
gives directly the slope of the regression line. In CCA
and in a PCA–CA co-inertia analysis, this scalar prod-
uct is equal to the mean (mj) of the species distribution
along the ecological gradient. Indeed, in this case, the
xi are the species abundance in the samples: ,xzy.Dn

5 1/nj Si xiyi 5 mj (the nj are the species totals). This
is why CCA can be used when the species response
curve is unimodal: a unimodal response curve is more
appropriately approximated by its mean than a linear
trend.

The same reasoning can be used in co-inertia anal-
ysis, but instead of being limited to these two alter-
natives (CCA and unimodal species response curves
vs. RDA and linear species response curves), many
other methods can be explored. The two simplest ones,
corresponding to RDA and CCA, are the PCA–PCA
co-inertia analysis, where the two tables are analyzed
by PCA, and the PCA–CA co-inertia analysis, where
the environmental variables table is analyzed with a
PCA and the species table is analyzed with a corre-
spondence analysis. The case of the MCA–CA co-in-
ertia analysis is also particular: it links a multiple cor-
respondence analysis (MCA, Tenenhaus and Young
1985) and a correspondence analysis, and it is exactly
the same method as the analysis of ecological profiles
(Romane 1972, Montaña and Greig-Smith 1990, Mer-
cier et al. 1992, Reynaud and Thioulouse 2000).

Co-inertia analysis can also be used with many other
analyses. Dray et al. (2003) give several examples and
a complete presentation of these possibilities. The num-
ber of possibilities allowed for each of the two tables
is high, and the number of possible co-inertia analyses
is two times higher (since two tables are involved).
Only a small number of these possibilities have so far
been explored. All of them have different mathematical
properties that need to be properly examined, although
probably not all of them are equally interesting. But
this flexibility will allow ecologists to outgrow the op-
position between unimodal vs. linear species response
curve models, and provide them with statistical anal-
ysis methods much more adapted to their data than only
two standard procedures.

Partial triadic analysis

Partial triadic analysis (PTA) was derived from tri-
adic analysis (Tucker 1966) and introduced in ecology
by Thioulouse and Chessel (1987). The name ‘‘partial’’
triadic analysis comes in fact from Kroonenberg
(1989). Several examples of application can be found
in ecology (Dolédec 1988, Centofanti et al. 1989, Al-
iaume et al. 1993, Blanc and Beaudou 1998, Blanc et
al. 1998). The aim of this method is to analyze a three-
way table (i.e., a data cube; for example, species 3
sites 3 time), seen as a sequence of two-way tables.
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It is therefore different from Kroonenberg’s three-mode
PCA (Kroonenberg 1983), and from Tucker’s triadic
analysis. Partial triadic analysis belongs to the family
of the STATIS methods, as described in the book by
Lavit (1988), but in PTA all the tables must have the
same rows and the same columns, while in the STATIS
method, the rows or the columns (but not both) may
be different among the tables. These methods are based
on the concepts of vector variance, vector covariance,
and vector correlation (see Escoufier [1973] for a math-
ematical presentation of these notions). The vector var-
iance of a table is simply the variance of the vector
obtained by rewriting the columns of the centered table
one below the other instead of side by side. The vector
covariance and vector correlation between two tables
is simply the covariance and the correlation of the two
vectors obtained in the same way. They are not to be
mistaken for the matrix of cross-covariances between
the variables of two tables, which is used for example
in co-inertia analysis.

Partial triadic analysis, like all the methods of the
STATIS family, comprises three steps: the interstruc-
ture, the compromise, and the trajectories (Lavit et al.
1994). These three steps are explained below, and Ap-
pendix B gives a formal description of PTA in matrix
form.

First step: the interstructure. This step gives the ‘‘im-
portance’’ of each table: a matrix of scalar products
between the tables is computed, and the components
of the first eigenvector of this matrix are used as
weights of the tables to compute the compromise. An
important question here is the choice of the components
of this first eigenvector to weight the tables. It is jus-
tified by the fact that the linear combination obtained
with this weighting is mathematically optimal. The in-
ertia (sum of all the variances) of the compromise is
maximal (with the constraint that the sum of the squares
of the weights must be equal to one) when using the
components of the first eigenvector. Any other weight-
ing (uniform weights, for example) would produce a
compromise having a smaller inertia, and would thus
be less representative of the series of tables. Note that
this mathematical property is not particular to PTA: it
is used in all the methods of the STATIS family. One
particularity of PTA is that the components of the first
eigenvector are not always strictly positive, contrary
to the other STATIS methods. This may be a problem,
as a negative component would mean that the corre-
sponding table has a meaning opposed to the others,
and that the overall structure of the series of tables is
weak. In such a case, PTA should be avoided, but could
be replaced by a classical STATIS method (STATIS on
operators). Another solution would be to remove the
table having the negative component.

The first two axes can also be used to display the
series of tables on a factor map, as in a simple PCA.
This factor map summarizes the global structure and

the relationships between the tables. This is not, how-
ever, the main goal of this step.

Second step: the compromise. This is the main step
of the analysis. The compromise table is computed as
the weighted mean of all the tables of the series, using
the components of the first eigenvector of the inter-
structure as weights. This table is called the compro-
mise, and it has the same dimensions and the same
structure and meaning as the tables of the series. It is
analyzed by a PCA, giving a picture of the structures
common to all the tables.

Third step: the trajectories. The rows and columns
of all the tables of the series are projected on the factor
map of the PCA of the compromise as additional el-
ements. The points can then be linked by lines to un-
derline their trajectories. Each table can also be ana-
lyzed independently (for example, by a separate PCA
of each table) and the axes and components of these
PCAs can be projected on the factor maps (of the rows
and of the columns, respectively) of the PCA of the
compromise. This step summarizes the variability of
the series of tables around the common structure de-
fined by the compromise.

THE STATICO METHOD

STATICO is a three-step method: (1) each table is
first analyzed by a basic analysis (i.e., a one-table meth-
od), for example PCA, CA, or MCA; (2) each pair is
then linked by a co-inertia analysis, producing a cross-
table; (3) PTA is used to analyze the series of cross-
tables. Fig. 1 shows a summarized flow chart of the
STATICO method.

The series of tables is made up of K pairs. The kth
pair consists of one table of species composition and
one table of environmental conditions. All the species
composition tables must have the same species (in col-
umns), and all the environmental conditions tables
must have the same environmental variables (in col-
umns). However, not all species need be present in all
tables. The sampling sites (in rows) must be the same
for the two tables of one pair, but they may vary among
the pairs, for example for different geographic regions.
Each pair is then linked by a co-inertia analysis, leading
to a cross-table.

The series of cross-tables obtained in this way is then
analyzed by a PTA, concluding the STATICO analysis.
The compromise of this PTA is a cross-table equal to
a weighted mean of all the cross-tables. The analysis
of this compromise gives an ordination of the species
and an ordination of the environmental variables rep-
resenting the stable part of the species–environment
relationships across the series. The species and envi-
ronmental variables of each pair of tables can then be
projected as additional elements on the PCA of this
compromise, showing how the common structure is
taken into account by each pair. Moreover, the rows of
all the tables can also be projected on the compromise,
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FIG. 1. STATICO flow chart. The data structure is a sequence of pairs of ecological tables. Basic analyses (here PCA)
are performed on each table. Co-inertia analyses allow linkage of the pairs of PCA, producing a sequence of cross-tables.
PTA is finally used to analyze this sequence.

showing the ordinations of the sites and their relation-
ships across the series of tables.

APPLICATION EXAMPLE

The example data set was extracted from Pegaz-
Maucet (1980), and was also used by Blanc et al.
(1998). The species data consist of 13 species in six
sites, measured four times, and the environmental data
consist of 10 variables measured in the same sites and
at the same dates. So in this case, the sites are the same
at all dates, but this is not a constraint of the STATICO
method: only the species and the environmental vari-
ables must be the same at all dates.

The species data are the abundance of 13 Ephem-
eroptera taxa and the environmental data are the val-
ues of 10 physicochemical variables measured four
times a year (spring, summer, autumn, and winter) in

samples coming from six sites ordered along a small
stream in eastern France, the Méaudret (Fig. 2). The
series is therefore made of four pairs of tables. Each
pair is made of one environmental variables table with
six rows and 10 columns (Table 1) and one species
composition table with six rows and 13 columns (Ta-
ble 2).

Autrans, France, is a mountain resort, with tourists
coming both in summer and winter. However, the
stream flow is much lower in summer and autumn, and
pollutants are therefore much more concentrated. Site
1 is upstream from the village, so it is not polluted.
Site 2 is just below and receives the village sewage,
so the pollution is maximum in this site. Recovery (the
process of natural decontamination of the stream) takes
place along Sites 3, 4, and 5, and Site 6 is a control
upstream on the Bourne River, into which the Méaudret
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FIG. 2. Geographical map showing the six sampling sites.
Autrans, France, is a mountain resort (458109 N, 58339 E;
elevation 5 1250 m). Site 1 is situated just upstream from
the Autrans sewer system output, while Site 2 is just below.
Sites 3, 4, and 5 are situated downstream along the Méaudret,
and Site 6 is upstream on the Bourne, into which the Méaudret
flows.

TABLE 1. The 10 physicochemical variables measured four times (spring, summer, autumn, and winter) at six sampling
sites along the stream.

Season
and site

Temp.
(8C)

Flow
(m3/s) pH

Conduct.
(mmhos/cm)

Oxygen
(mg/L)

BDO5
(mg/L)

Oxydab.
(mg/L)

Ammo.
(mg/L)

Nitrates
(mg/L)

Phosph.
(mg/L)

Spring
Site 1
Site 2
Site 3
Site 4
Site 5
Site 6

10
11
11
12
13
11

41
158
198
280
322
303

8.5
8.3
8.5
8.6
8.5
8.5

295
315
290
290
285
245

110
13

113
126
117
100

2.3
7.6
3.3
3.5
3.6
1.7

1.4
3.3
1.5
1.5
1.6
0.9

0.12
2.85
0.4
0.45
0.48
0.05

3.4
2.7
4
4
4.6
2.7

0.11
1.5
0.1
0.73
0.84
0.16

Summer
Site 1
Site 2
Site 3
Site 4
Site 5
Site 6

13
13
15
16
15
13

62
80

100
140
160
310

8.3
7.6
7.8
8
8.4
8.2

325
380
385
360
345
285

95
20
46
76
91
82

2.3
21
15
12

1.7
8.5

1.8
5.7
2.5
2.6
1.9
1.6

0.11
9.8
7.9
4.9
0.22
0.59

3
0.8
7.7
8.4

10
3.7

0.13
3.65
4.5
3.45
1.74
0.6

Autumn
Site 1
Site 2
Site 3
Site 4
Site 5
Site 6

1
3
2
3
2
4

25
63
79
85
72

181

8.4
8
8.1
8.3
8.6
8.6

315
425
350
330
305
270

91
38
84

106
91

105

1.6
36

7.1
2
1.6
2.8

0.5
8
1.9
1.4
0.9
0.5

0.07
12.5

2.7
0.42
0.1
0.1

6.4
2.2

13.2
12

9.5
3.66

0.03
6.5
3.7
1.6
1.25
0.43

Winter
Site 1
Site 2
Site 3
Site 4
Site 5
Site 6

3
3
3
3
2
3

118
252
315
498
390
480

8
8.3
8.3
8.3
8.2
8.2

325
360
370
330
330
290

100
100
100
100
100
100

1.6
9.5
8.7
4.8
1.7
1.3

1.2
2.9
2.8
1.6
1.2
0.8

0.17
2.52
2.8
1.04
0.56
0.04

1.8
4.6
4.8
4.4
5
2.2

0.19
1.6
2.85
0.82
0.6
0.13

Note: Table heading abbreviations: Temp. 5 temperature, Conduct. 5 conductivity, BDO5 5 biological demand for oxygen,
Oxydab. 5 oxydability, Ammo. 5 ammonium, Phosph. 5 phosphates.

flows. The details of sampling methods can be found
in Pegaz-Maucet (1980).

The aim of the study is to analyze the stability of
the relationships between the physicochemical com-
position of water samples, indicating the pollution by
the Autrans village, and the species composition found
at the corresponding sites. Only the results of the in-
terstructure, compromise, and trajectories steps of the
STATICO method will be given here. The separate
analyses of each table (normed PCA of the environ-
mental variables and centered PCA of the species data)
and the PCA–PCA co-inertia analysis of each pair of
ecological tables is not presented here, but a more com-
plete presentation is given in Appendix C.

Interstructure

Fig. 3 shows the factor map of the interstructure.
The third sampling date (autumn), with the longest ar-
row, is clearly more important than the three others,
meaning that the compromise will be more influenced
by this date. Spring and winter have short arrows,
which means that the corresponding tables are less
structured and that their importance in the compromise
will be lower.

Compromise

Fig. 4 shows the factor maps of the PCA of the
compromise, for the physicochemical variables (Fig.



January 2004 277ANALYSIS OF PAIRED ECOLOGICAL TABLES

FIG. 3. Interstructure factor map of the STATICO analysis on the Méaudret data. This map shows the importance of each
sampling date in the compromise. PC1 5 first principal component; PC2 5 second principal component. The scale of the
graph is given in the rounded box.

TABLE 2. Abundance of 13 Ephemeroptera species in six sites along the stream at four times.

Season
and site Eda Bsp Brh Bni Bpu Cen Ecd Rhi Hla Hab Par Cae Eig

Spring
Site 1
Site 2
Site 3
Site 4
Site 5
Site 6

4
0
0
0
0
2

7
0
5
3
5
7

10
8
5
6
6
9

9
0
0
0
0
4

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
5
0

5
0
2
3
0
5

9
4
5
6
4
6

0
0
0
0
0
0

4
0
0
0
0
2

0
0
0
0
0
0

0
0
0
0
4

10

Summer
Site 1
Site 2
Site 3
Site 4
Site 5
Site 6

6
0
0
0
0
0

7
0
6
7
6
8

10
9
8

11
9
9

0
0
0
0
2
3

10
0
0
0
3
4

0
0
2
2
0
0

0
0
0
0
4
2

2
0
0
0
0
4

7
0
0
2
0
3

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
5
2
0

2
0
0
5
7
8

Autumn
Site 1
Site 2
Site 3
Site 4
Site 5
Site 6

4
0
0
0
2
0

5
0
9

10
10
12

8
1

10
13
12
13

0
0
0
0
0
0

9
0
0
0
4
8

6
0
0
3
0
3

0
0
0
0
8
6

5
0
0
5
4
9

9
0
4
5
4
7

0
0
0
1
2
0

7
0
3
4
5
0

0
0
0
2
1
0

0
0
0
4
6
5

Winter
Site 1
Site 2
Site 3
Site 4
Site 5
Site 6

3
0
0
0
1
0

6
3
0
6
9
9

7
6
3

10
11
12

0
0
0
0
0
0

6
0
0
0
3
7

7
5
1
5
6
4

0
0
0
1
8
5

4
4
1
3
3
8

8
3
0
5
5
6

0
0
0
0
2
0

4
1
0
2
5
1

0
0
0
0
0
0

0
0
0
0
0
0

Note: The species codes are as follows: Eda 5 Ephemera danica, Bsp 5 Baetis sp., Brh 5 Baetis rhodani, Bni 5 Baetis
niger, Bpu 5 Baetis pumilus, Cen 5 Centroptilum, Ecd 5 Ecdyonurus, Rhi 5 Rhithrogena, Hla 5 Habrophlebia lauta, Hab
5 Habroletoides modesta, Par 5 Paraletophlebia, Cae 5 Caenis, Eig 5 Ephemerella ignita.

4A) and for the Ephemeroptera species (Fig. 4B). The
factor map of the physicochemical variables (Fig. 4A)
opposes on the first axis the indicators of pollution (on
the right: conductivity, ammonium, phosphorus, ox-
ydability, and biological demand for oxygen [BDO5])
to the oxygen concentration and the pH (on the left).
This first axis is therefore a pollution gradient, with

the highest pollution on the right. On the second axis,
nitrates are isolated in the upper part of the graphic,
but temperature and flow are in the same direction.
Nitrates are an intermediate step in the ammonium–
nitrates–mineral nitrogen sequence, and they are char-
acteristic of the recovery process of the stream. Tem-
perature and flow are also increasing downstream. The
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FIG. 4. Compromise factor maps: (A) physicochemical variables; (B) Ephemeroptera species. This map shows the stable
part of the species–environment relationships. See Table 2 for species names. PC1 5 first principal component; PC2 5 second
principal component. The scale of the graph is given in the rounded box.

second axis is therefore an upstream–downstream axis,
correlated with water quality recovery.

Fig. 4B shows a size effect, with all Ephemeroptera
species on the left. This is a characteristic effect ob-
tained when using PCA on species data, and it allows
the effect of the pollution on species abundance to be
clearly seen. Species with long arrows are more abun-
dant, and species with short arrows are less abundant.
Species in the upper left part of the graphic (Bsp and
Brh) are characteristic of places where recovery has
taken place, while species in the lower left part of the
graphic (Bpu) are characteristic of non-polluted sites.

So the stable part of the species–environment dy-
namics extracted by this compromise is as follows: (1)
on the first factor, the pollution gradient, linked to the
overall toxicity of pollution on Ephemeroptera species,
and (2) on the second factor, the upstream–downstream
recovery process, linked to the opposition between spe-
cies characteristic of non-polluted sites (Bpu in Sites
1 and 6) and species present in intermediate sites (Bsp
and Brh in all sites except Site 2).

The next step of the STATICO analysis is a detailed
description of each date, obtained by projecting the
rows and columns of the initial tables in the compro-
mise analysis.

Trajectories

Fig. 5 shows the projection of the six sites at the
four dates on the factor map of the PCA of the com-
promise. The graphic has been split according to sea-
sons. Each site is represented by two points: one is the
projection of the row of the physicochemical table (ar-

row tip), and the other is the projection of the row of
the species table (circle). The structure is the strongest
in autumn, when the pollution is maximum. The species
composition and the water physical chemistry are di-
rectly linked to the pollution-recovery gradients that
were evidenced in the compromise analysis. Site 1 is
unharmed because it is upstream from Autrans. Site 2
is just below and receives the sewage, so the pollution
is maximum. Recovery occurs along Sites 3, 4, and 5,
and pollution is absent from Site 6, which is a control
on another stream. In spring the pollution has not yet
begun, and the structures are weak. In summer, the
pollution has not achieved its maximum, because the
recovery process limits the pollution. In autumn, the
structure is very strong because the stream flow is the
lowest, natural recovery capacities of the stream have
been exceeded, and the concentration of pollutants is
maximum. In winter, the pollution has decreased be-
cause summer tourists have left, and the stream flow
is much higher. This graphic very clearly shows the
dynamics of species–environment relationships. The
species follow the environmental modifications, with a
time lag in winter and summer.

It is also possible to project the columns of the tables
(i.e., the physicochemical variables and the Ephemer-
optera species at each date on the compromise PCA
factor map). Fig. 6 shows the projection of the ten
physicochemical variables, and Fig. 7 shows the pro-
jection of the 13 Ephemeroptera species. Fig. 6 clearly
confirms that the physicochemical structures are the
strongest in autumn, and that the pollution-recovery
process reaches a maximum during this season. On the
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FIG. 5. Trajectories factor map: projection of the coordinates of the six sampling sites on the PCA factor map of the
compromise. The black lines correspond to the trajectories of the rows of the physicochemical variables table (arrow tips),
and the grey lines correspond to the trajectories of the rows of the Ephemeroptera species table (circles). PC1 5 first principal
component; PC2 5 second principal component. The scale of the graph is given in the rounded box.

contrary, the physicochemical structures are very low
in spring and winter. Fig. 7 confirms the modifications
of the species distributions during the year. For ex-
ample, Brh (Baetis rhodani) and Bsp (Baetis sp.) are
abundant in autumn, but they are found only down-
stream to Site 2, where pollution has already decreased.
On the contrary, Bpu (Baetis pumilus) is mostly present
upstream to Site 2 (in Site 1), or in Site 6 where pol-
lution is absent. These three species have long arrows
pointing to the left because they are abundant in all
sites, except in Site 2 due to pollution.

DISCUSSION

This small example shows that the STATICO method
is an efficient tool to analyze sequences of paired eco-
logical tables. Its flexibility allows it to be adapted to
very different experimental conditions. This flexibility
comes in part from the flexibility of co-inertia analysis,

which can be used with any kind of pairs of ecological
tables. Many other forms of STATICO could be de-
veloped, based for example on other types of co-inertia
analyses. It is important to note that all the co-inertia
analyses performed on the pairs of tables need not to
be the same: one can mix PCA–PCA, PCA–CA, MCA–
CA, or any other form of co-inertia analyses, according
to the aims of the study. The only constraints are that
all the cross-tables must have the same rows and the
same columns (i.e., that the species and environmental
variables must be the same in all the pairs of tables).
These constraints come from partial triadic analysis
(PTA), and one of them (but not both) can be removed
by using STATIS instead of PTA. In this case, the in-
terpretation of the removed constraint is lost. If envi-
ronmental variables vary among tables, the analysis of
the compromise will not describe them, because the
compromise will be a square matrix of scalar products
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FIG. 6. Trajectories factor map: projection of coordinates of the 10 physicochemical variables on the PCA factor map of
the compromise. The four seasons have been plotted on four separate graphics. In spring and winter, some of the labels of
the variables near the origin were superimposed and could not be read. Since these variables have no importance in this
graphic, they have been removed. PC1 5 first principal component; PC2 5 second principal component. The scale of the
graph is given in the rounded box.

FIG. 7. Trajectories factor map: projection of the coordinates of the 13 Ephemeroptera species on the PCA factor map
of the compromise. The four seasons have been plotted on four separate graphics. As in Fig. 6, some of the species codes
near the origin were removed to improve the presentation. PC1 5 first principal component; PC2 5 second principal
component. The scale of the graph is given in the rounded box.

among species. Conversely, if species vary among ta-
bles, the analysis of the compromise will not describe
them, because the compromise will be a square matrix
of scalar products among environmental variables.
Keeping both constraints allows PTA to compute a
compromise that is a species 3 environmental variables
cross-table, leading to the simultaneous description of
species and environmental variables.

STATICO could also be based on a CCA and/or a
RDA on each pair of tables. However, methodological
problems are raised by the regression step involved in
these methods: if the number of samples is low, CCA

tends toward a simple CA, and the role of environ-
mental variables may be underestimated. See Dray et
al. (2003) for a study of this problem, and comparisons
between CCA and co-inertia analysis based on simu-
lated data. This problem can be avoided using CCA–
PLS (partial least squares CCA; ter Braak and Ver-
donschot 1995), but with a substantial increase of com-
plexity. Moreover, using these methods is an implicit
choice of the unimodal vs. linear species response
curve model that may not be justified by the aims of
the study, or not be supported by the data. Using MCA,
NSCA (non-symmetric correspondence analysis, Gi-
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maret-Carpentier et al. 1998), FCA (fuzzy correspon-
dence analysis, Chevenet et al. 1994), PCA variants,
or other basic analyses linked by a co-inertia analysis
allows researchers to take into account more biological
information, to use methods more adapted to the data,
and to produce more accurate statistical results.

The comparison between STATICO and ad hoc ap-
proaches can be based on two types of considerations:
the mathematical properties of the methods, and the
biological aims of the study. From a mathematical point
of view, STATICO has big advantages. Two examples
of ad hoc methods are: (1) performing a CCA or a RDA
on the joint tables (i.e., the two tables obtained by
pasting the tables of a sequence one below the other),
and (2) performing a CCA or a RDA on the average
tables and then projecting each initial table in this anal-
ysis. The advantage of STATICO is the mathematical
optimality theorems on which it is based: no other com-
promise can be better than the PTA compromise. The
ad hoc methods will give results similar to STATICO
when the structure of the sequence is strong (i.e., when
the stable part is important) and all the tables have
almost the same contribution to this structure. But when
the structure is less strong, and when some tables have
minor or different contributions to this structure, the
STATICO compromise will be better, because instead
of a simple average, it uses a non-uniform weighting
(components of the first eigenvector of the interstruc-
ture). In this case, STATICO will downweight the ta-
bles with minor contribution or different structure, and
the resulting compromise will be nearer to the other
tables.

From a more general point of view, using methods
precisely adapted to the biological aims of the study
instead of using ad hoc methods is preferable. The
search for a well adapted method, instead of the im-
mediate use of an easy ad hoc method, will prompt
further thinking about the aims of the study, and will
allow a better interpretation of the results.

Many graphical displays can be drawn to help in-
terpret the numerical outputs of STATICO, and not all
of them have been shown in this paper. We have chosen
a very small example, and many of our conclusions
could have been drawn from simpler ad hoc methods,
like the PCA of joint tables. However, on large data
sets with more complex structures, STATICO will al-
low a much more detailed analysis and will make the
study of the stability of species–environment relation-
ships easier.

All the computations and graphical displays were
performed using the free ADE-4 multivariate analysis
and graphical display software (Thioulouse et al. 1997;
available online).4

ACKNOWLEDGMENTS

We are very grateful to N. Kenkel, P. Legendre, and an
anonymous referee for their help in improving the first version
of this paper.

4 URL: ^http://pbil.univ-lyon1.fr/ADE-4&

LITERATURE CITED

Aliaume, C., C. Monteiro, M. Louis, T. Lam Hoai, and G.
Lasserre. 1993. Organisation spatio-temporelle des peu-
plements ichtyologiques dans deux lagunes côtières: au
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APPENDIX A

CO-INERTIA ANALYSIS RATIONALE

Co-inertia analysis is a two-tables analysis. It searches for
axes that maximize the covariance between the coordinates
of the rows of the two tables. See Dray et al. (2003) and
Dolédec and Chessel (1994) for a more complete description
of co-inertia analysis.

Let X (n 3 p) and Y (n 3 q) be the two tables: in an
ecological situation, X may be, for example, an environmental
variables table, and Y a species abundance table. XT is the
transpose of X. Let Dp (p 3 p) and Dq (q 3 q) be the diagonal
matrices of column weights. These weights are often equal
to one (as in a PCA, for example). An exception is CA, where
they are equal to nj /n, with nj 5 Si nij, n 5 Sj nj, nij being the
abundance of species j in sample i. Other examples of anal-
yses where non-uniform column weights are used are FCA
(fuzzy correspondence analysis, Chevenet et al. 1994), and
NSCA (non-symmetric correspondence analysis, Gimaret-
Carpentier et al. 1998).

Let Dn (n 3 n) be the diagonal matrix of row weights.
These weights are also very often uniform, all equal to 1/n
in PCA, for example. In CA, they are equal to ni /n, with ni

5 Sj nij, n 5 Si ni. The row weights of the two tables must
be equal to do the co-inertia analysis. This means that, for
example in a PCA–CA co-inertia analysis, the initial PCA of
environmental variables must be computed with the row
weights of the species table CA (instead of 1/n).

The PCA of X is the eigenanalysis of matrix C 5 XTDnXDp

5 1/nXTX. If the variables of X are centered, C is the co-
variance matrix, and if they are normed, it is the correlation
matrix.

The co-inertia analysis of X and Y is the eigenanalysis of
matrix W:

T TW 5 X D YD Y D XD .n q n p

The PCA–PCA co-inertia analysis of X and Y (Tucker’s
inter-battery analysis) is the eigenanalysis of matrix
WPCA–PCA:

2 T TW 5 1/n X YY X.PCA–PCA

If the variables of X and Y are normed, this is a matrix (p
3 p) of sums of products of cross-correlations between X
and Y: Si cor(xi , yj)cor(xi , yk), which is high when both cor-
relations are high. For example, for two environmental var-
iables x1 and x2, this value will be high if the correlations
between these variables and the species are high for the same
species (i.e., two environmental variables will be linked if
they have strong (linear) correlations with the same species).

In the case of a PCA–CA co-inertia analysis, the row
weights are not uniform, and matrix W cannot be simplified.
Since the row weights (Dn) must be the same for X and Y,
the PCA of X is done using the row weights of the CA of
Y. For two environmental variables x1 and x2, the values in
matrix W will be high if the position of the optimum of the
species response curve is similar on these two variables.

Many other forms of co-inertia analysis exist, with different
mathematical properties. They can be obtained by coupling
other basic analyses. A recent example is the OMI (outlying
mean index) analysis (Dolédec et al. 2000), which uses a
PCA on species profiles.

APPENDIX B

PARTIAL TRIADIC ANALYSIS

Partial triadic analysis is an analysis of a sequence of tables.
Let Xk be the kth table of the series. All the tables must have
the same number of rows (n) and columns (p). Let Dn and
Dp be the diagonal matrices of row and column weights.

INTERSTRUCTURE

The interstructure consists of computing a matrix of scalar
products between tables (i.e., the vector covariance matrix:
Covv (Xk , Xl) 5 Trace (Xk

TDnXlDp)). The eigenanalysis of
this matrix gives a first eigenvector, in which components ak

are used as weights to compute the compromise. Alterna-
tively, a matrix of vector correlations can be used to rescale

the importance of the tables: Rv(Xk , Xl) 5 Covv (Xk , Xl)/
. Vav (Xk) is the vector variance of tableÏVav (X )Vav (X )k l

Xk: Vav (Xk) 5 Trace (Xk
TDnXkDp). It is simply the variance

of the vector obtained by putting all the columns of table Xk

one below the other. The vector correlation matrix and the
vector covariance matrix are linked by the same relationships
as the normal correlation and covariance matrices.

COMPROMISE

The compromise Xc is a linear combination of the initial
tables, weighted by the components of the first eigenvector
of the interstructure: Xc 5 Sk akXk. The analysis of this com-
promise table (for example by a simple PCA) gives factor
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maps that can be used to interpret the structures of this com-
promise.

TRAJECTORIES

The rows and columns of the initial tables are projected in
the PCA of the compromise (i.e., the rows are projected on
the principal axes, and the columns are projected on the prin-

cipal components). This step is performed like in a simple
PCA: let U be the matrix of the eigenvectors of the analysis
of the compromise. The coordinates of the rows of table Xk

are Rk 5 XkDpU, and the coordinates of its columns are Ck

5 Xk
TD nXcDpUL21/2, L21/2 being the diagonal matrix of the

inverses of the square root of the eigenvalues of the analysis
of the compromise.

APPENDIX C

STATICO computations are available in ESA’s Electronic Data Archive: Ecological Archives E085-004-A1.


